Indian Phytopathology

Editors

Chief Editor Dr. B.N. Chakraborty Professor Department of Biological Science IIA/27 Newtown, Aliah University New Town, Kolkata

Senior Editor (Fungal Pathology, Mycology, Nematology) Dr. M.S. Saharan Principal Scientist Division of Plant Pathology ICAR-Indian Agricultural Research Institute

Senior Editor (Bacteriology, Virology) Dr. K.B. Pun Principal Scientist Division of Plant Pathology ICAR-Indian Agricultural Research Institute

Fungal Pathology Dr. A.K. Chowdhury Professor and Head Department of Plant Pathology Uttar Banga Krishi Viswavidyalaya North Bengal Agriculture University) Coochbehar, West Bengal

Dr. Pranab Dutta Associate Professor (Plant Pathology) School of Crop Protection College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University Umiam, Meghalaya Dr. K. Angappan Professor Department of Plant Pathology, Agricultural College & Research Institute Killikulam Vallanad, Tamil Nadu

Dr. Jameel Akhtar Principal Scientist Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus

Dr. B.M. Bashyal Scientist Division of Plant Pathology, ICAR-Indian Agricultural Research Institute New Delhi, Delhi

Dr.R. Gopi Scientist (Plant Pathology) ICAR-Sugarcane Breeding Institute, Research Centre, Civil Station Post, Talap Kannur, Kerala

Dr. Vinayaka Hegde Principal Scientist (Plant Pathology) & Head Division of Crop Protection ICAR- Central Plantation Crops Research Institute Post: Kudlu, Kasaragod Kerala, India

Dr. Sachin Gupta Associate Professor Division of Plant Pathology Sher-e-Kashmir University of Agriculture Science & Technology-J, Jammu Jammu & Kashmir Dr. S. Jahagirdar Professor Department of Plant Pathology, AICRP on Soybean, University of Agricultural Sciences Dharwad, Karnataka

Dr. R. Selvakumar Principal Scientist (Plant Pathology) ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu

Dr. Subhash C. Bhardwaj Principal Scientist & In Charge ICAR-Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, H.P., India

Dr. Harbans Bariana Professor of Cereal Rust Genetics Plant Breeding Institute, SOLES Faculty of Science The University Of Sydney 107 Cobbitty Rd, Cobbitty, NSW Australia

Dr. Fayz Ahmad Abdel-Rahman Postharvest Disease Department Plant Pathology Research Institute Agricultural Research Center (ARC). 9 Gamma Street, Giza – Egypt

Dr. Ravjit Khangura Senior Plant Pathologist Grains – Research Development and Innovation Industry and Economic Development Department of Primary Industries and

Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth WA, Australia Dr. Ganga D Sinniah Principal Research Officer Plant Pathology Division Tea Research Institute of Sri Lanka Talawakelle, Sri Lanka

Dr Frank Kwekucher Ackah Mycologist/Plant Pathologist Department of Crop Science College of Agriculture and Natural Sciences University of Cape Coast, Ghana

Dr. Hebert-Zair Barrels Cureno Natural Processes Division Community Forest Engineering Intercultural University of the State of Puebla Calle Principal a Lipuntahuaca S/N., Lipuntahuaca, Huehuetla, Puebla, C.P, Mexico

Prof. Jing Lan Inner Mongolia Agricultural University Plant Pathology 306 Xinjian east street Hohhot, Inner Mongolia, China

Bacteriology Dr. A. Kumar Principal Scientist Division of Plant Pathology, ICAR-Indian Agricultural Research Institute New Delhi, Delhi

Dr. Jagjeet Singh Lore Plant Pathologist Department of Plant Breeding & Genetics Punjab Agricultural University Ludhiana, Punjab

Dr. R. Ramesh Principal Scientist (Plant Pathology) ICAR-Central Coastal Agricultural Research Institute Old Goa, Paneji, Goa

Mycology Dr. Udai Bhan Singh Scientist ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM) Kushmaur, Post Box. No. 6, Mau Nath Bhanjan Uttar Pradesh Dr. N.K. Dubey Professor and Co-ordinator (Applied Microbiology) Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh

Dr. Rashmi Dubey Scientist 'C' Botanical Survey of India, Western Regional Centre, 7-Koregaon Road, Pune Maharashtra

Dr. Laszlo Kredics Department of Microbiology, Faculty of Science and Informatics, University of Szeged Közép fasor, Szeged, Hungary

Dr. Amirreza Amirmijani, Assistant Professor in Mycology Department of Plant Protection Faculty of Agriculture University of Jiroft Jiroft - IRAN

Dr. Palash Deb Nath Professor Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam

Dr. T. Makeshkumar Principal Scientist (Plant Pathology) ICAR-Central Tuber Crops Research Institute, Thiruvanthapuram, Kerala

Dr. Naimuddin Principal Scientist (Plant Pathology) Division of Crop Protection ICAR-Indian Institute of Pulses Research Kanpur, Uttar Pradesh

Dr. Raj Verma Principal Scientist I.A.R.I Regional Station, Survey No. 125A, Baner Phata, I.T.I Road, Aundh, Pune, Maharashtra

Dr. Md Shamim Akhter Senior Scientist Plant Pathology Division Bangladesh Agricultural Research Institute (BARI) BANGLADESH Prof. Elvis Asare-Bediako Professor of Plant Virology Dean, School of Agriculture College of Agriculture and Natural Sciences University of Cape Coast, Ghana, West Africa

Dr. L.M. Suresh Maize Pathology Lead – Sub Saharan Africa International Maize and Wheat Improvement Center (CIMMYT) World Agroforestry Centre (ICRAF) United Nations Avenue Gigiri, Nairobi, Kenya

Dr. Mujeebur Rahman Khan Professor, Department of Plant Protection Dean, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh, UP, India

Dr. Vishal Singh Somvanshi Principal Scientist Division of Nematology LBS Centre, ICAR-IARI, New Delhi

Dr Sukhjeet Kaur Randhawa Nematologist Department of Vegetable Science Punjab Agricultural University, Ludhiana

Articles

1. <u>First report of</u> Sweet potato leaf curl virus (SPLCV) on Ipomoea batatas in Bali, Indonesia

Authors (first, second and last of 4)

- o Listihani Listihani
- 0 I. Gusti Ayu Diah Yuniti
- Putu Eka Pasmidi Ariati
- Content type: Short Communication

2. Fruit rot of cowa (Garcinia cowa): a new disease record from Bangladesh

Authors (first, second and last of 8)

- o Muhammad Ziaur Rahman
- o Mohammad Mazharul Karim
- o Firoza Khatun
- Content type: Short Communication

3. Benincasa hispida (Thunb.) Cogn.: a new host of phytoplasma showing virescence and witches-broom symptoms in India

Authors

- o Smriti Mall
- O R. K. Gaur
- o Renu Maurya
- Content type: Short Communication

4. Identification of new sources of resistance to watermelon bud necrosis virus (WBNV)

Authors (first, second and last of 4)

- Jayanta Jamatia
- O Harshawardhan Choudhary
- o B. Basavaraj
- Content type: Research Article

5. <u>New record of natural occurrence of carrot thin leaf virus (CTLV) on carrot</u> (*Daucus carota* <u>L.) from India</u>

Authors (first, second and last of 7)

- O P. V. Dinesh Kumar
- O Nishant Srivastava
- O R. P. Pant
- Content type: New Reports

SHORT COMMUNICATION

First report of *Sweet potato leaf curl virus* (SPLCV) on *Ipomoea batatas* in Bali, Indonesia

Listihani Listihani¹ · I. Gusti Ayu Diah Yuniti¹ · Putu Fajar Kartika Lestari¹ · Putu Eka Pasmidi Ariati¹

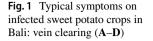
Received: 16 September 2021 / Revised: 9 February 2022 / Accepted: 13 March 2022 \circledcirc Indian Phytopathological Society 2022

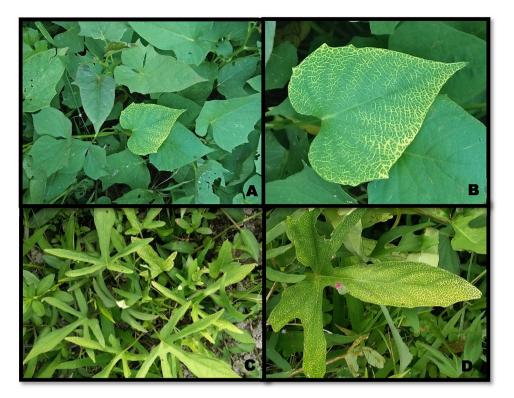
Abstract

During a field survey at 9 regions in Bali Province, we found plants with vein yellowing symptoms on young leaves. The vein yellowing symptoms were validated by extracting total DNA, performing PCR, subcloning with TA cloning, and sequencing the plasmid DNA. PCR amplification was done by using universal primer of Begomovirus. The SPG1/SPG2 primers amplified DNA bands of 900 bp from two leaf samples showing symptoms of vein yellowing from Badung and Gianyar. The nucleotide and amino acid sequences of two isolates from sweetpotato in Bali had highest identity with that of SPLCV isolates China and South Korea. This is the first report of SPLCV infection on sweetpotato in Indonesia.

Keywords Sweet potato leaf curl virus · Sweetpotato · Begomovirus · Yellowing

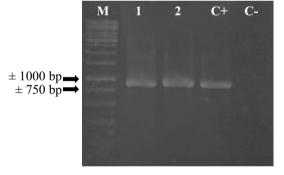
Sweetpotato (*Ipomoea batatas*) many producted in Asia, particularly in the Far East Asia and Southeast Asia countries. In Indonesia, sweetpotato becomes staples food particularly in Eastern Indonesia. Food diversification is a solution to the problem of food needs in Indonesia. Sweetpotato production in Indonesia in 2015, 2016, 2017, and 2018 amounted to 2298, 2169, 2023, and 1914 tons (Central Bureau of Statistics 2019). According to this data, annual production has reduced. In 2019, a field assessment of sweet potato production in nine regions of Bali Province discovered yellowing symptoms on plants in the Badung and Gianyar regions (Fig. 1). The leading cause of sweetpotato virus disease in Bali is the *Sweet potato leaf curl virus* (SPLCV). The same viral infection was detected in China, resulting in a 20% decline in sweetpotato yield (Feng et al. 2000).


According to Moyer and Salazar (1989), the SPLCV virus was discovered for the first time in Japan and Taiwan in 1980. Moreover, in several countries such as the United States of America, Brazil, Italy, Spain, Peru, Kenya,


The reported nucleotide sequence can be found in the DDBJ/ EMBL/GenBank databases under the accession numbers LC586169 and LC586170.

Listihani Listihani listihani9@gmail.com Uganda, India, China and Korea, similar viruses have been found (Briddon et al. 2006; Kwak et al. 2006; Parotka et al. 2010; Albuquerque et al. 2011; Wasswa et al. 2011; Zhang and Ling 2011; Kim et al. 2015). Yellow veins and upward curling leaves are symptoms of SPLCV infection in young sweetpotato plants (Kim et al. 2015). The host range of SLCV such as Ipomoea purpurea, I. nil, I. batatas, I setosa, I aquatica, and Nicotiana benthamiana (Clark and Hoy 2006; Albuquerque et al. 2011; Wasswa et al. 2011; Zhang and Ling 2011; Choi et al. 2012; Kim et al. 2015). SPLCV can be transmitted persistently by the whitefly vector Bemisia tabaci (Simmons et al. 2009) and grafting. There have been no transmission reports through mechanical or seeds transmission. However, currently, SPLVC transmission has been found through seeds (Kim et al. 2015). SPLVC DNA can replicate in seedlings. This incident has occurred in Korea. The proof is SPLCV detected in endosperm and embryos by PCR. Previously, SPLCV have not been reported in Indonesia.

In this study, the disease incidence of these viruses based on observations of symptoms in the fields. The incidence of viral diseases in the field showed that the disease incidence is more than 50% occurs in Badung and Gianyar Regions (data not shown). One hundred eighty samples of sweet potato leaves exhibiting symptoms consistent with SPLCV infection were collected from nine regions throughout Bali Province (Badung, Bangli, Buleleng, Denpasar, Gianyar, Karangasem, Klungkung, Jembrana and Tabanan). The


¹ Study Program of Agrotechnology, Faculty of Agriculture and Business, Universitas Mahasaraswati Denpasar, Denpasar 80233, Indonesia

purpose of this collection was to determine the presence of SPLCV in sweet potatoes.

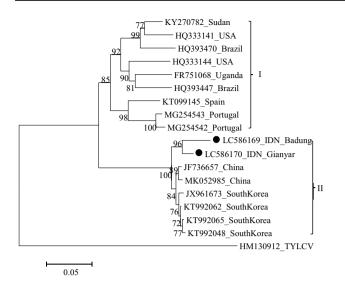

To confirm the vein vellowing symptoms, the total DNA was extracted, and PCR was performed. Then, the PCR products were subcloned using TA cloning and followed by plasmid DNA sequencing. PCR amplification was done by using universal primer of Begomovirus SPG1 and SPG2 (Li et al. 2004). Dream Taq Green Master Mix (2X) was utilized for the Amplification reactions (Thermo Fisher Scientific, Waltham, MA, USA). The SPG1/SPG2 primers amplified DNA bands of 900 bp from two leaf samples showing symptoms of vein yellowing from Badung and Gianyar (Fig. 2). The result of PCR from plants not showing symptoms and that no amplification was observed. The disease symptoms have the ability to transmit its diseases from the symptomatic plants to healthy plants through grafting to *I. setosa*. The results of this detection prove the presence of Begomovirus infection in sweetpotato plants. DNA fragments of Begomovirus were cloned toward pTZ57R/T vector plasmid (InsTAclone PCR Cloning Kit, Thermo Scientific, USA) and injected into competent cells of E. coli DH5 α . Sequence analysis was performed on the recombinant plasmid DNA extract. Using Clustal W, the partial genes' nucleotide and amino acid sequences were matched to the

Fig. 2 Visualization of PCR products using universal primer of *Begomovirus* SPG1/SPG2: melon leaves from the Gianyar (1), Badung (2), positive control (C+), negative control (C-), DNA ladder 1 kb (M) (Thermo Fisher Scientific, USA)

SPLCV sequences in the GenBank database (Ameri and Ayazpour 2021) (Fig. 3).

The nucleotide and amino acid sequence homology of the SPLCV Bali isolate varied between 97.8% and 98.8%. This indicates a low degree of variation. The homology of SPLCV Bali isolates to that of isolates from other countries was ranged 86.5–97.2% and 88.7–98.4%, respectively. Two clones from Badung (LC586169) and Gianyar (LC586170)

Fig. 3 Phylogeny tree of the AC1 and AC2 gene of SPLCV Bali isolate; nucleotide sequences of SPLCV using *Tomato yellows leaf curl virus* (TYLCV) as out group. IDN-Indonesia

shared a maximum identity of 96.2–97.2% and 97.3–98.4% at nucleotide and amino acid level, respectively towards the SPLCV isolate reported from China (MK052985) and South Korea (KT992062), confirming the association of SPLCV with vein yellowing symptoms on sweetpotato in Bali, so we designated the isolate as SPLCV-IDN (Indonesia).

The phylogenetic tree analysis showed that SPLCV divided into II groups. Group I consists of isolates from Asia, II are isolates from America and Europe. SPLCV Bali isolates were in the same group with other Asia isolates. This study is the first report on SPLCV infection in sweet potatoes in Bali. Since the province has been leading the sweet potato production in Indonesia such result finding will help strengthen plant health certification standards in order to provide virus-tested propagative materials and bulbs for domestic growers and export to other countries (Table 1).

Isolate	Geographical origin	Host	Symptoms	Homology (%)				Accession number
				Badung		Gianyar		
				nt	aa	nt	aa	
ZJ Abs-1	Badung, Bali, Indonesia	Ipomoea batatas	Vein clearing			97.8	98.8	LC586169
U Ubud-1	Gianyar, Bali, Indonesia	Ipomoea batatas	Vein clearing	97.8	98.8			LC586170
hu194 Hu-194	Hunan, China	Ipomoea batatas	Unknown	97.0	98.2	97.2	98.4	MK052985
ZJ	Zhejiang, China	Ipomoea setosa	Leaf curling	94.3	96.2	96.5	97.4	JF736657
202	South Korea	Ipomoea batatas	Leaf curling	94.0	96.2	96.1	97.1	KT992065
169	South Korea	Ipomoea batatas	Leaf curling	96.2	97.3	96.4	97.6	KT992062
GE-21	Muan, South Korea	Ipomoea batatas	Unknown	94.0	96.2	96.0	97.1	JX961673
7	South Korea	Ipomoea batatas	Leaf curling	93.6	95.7	95.7	96.9	KT992048
Sp3-2	Spain	Unknown	Unknown	87.4	89.8	89.0	90.9	KT099145
P213-11	Southern Portugal	Ipomoea indica	Vein clearing	87.0	89.2	88.6	90.2	MG254543
P213-8	Southern Portugal	Ipomoea indica	Vein clearing	86.9	88.4	88.3	90.0	MG254542
409	Khartoum, Sudan	Ipomoea batatas	Lef curling	87.6	89.6	88.8	90.4	KY270782
Uk-2008	Kampala, Uganda	Ipomoea setosa	Leaf curling	87.3	89.6	88.8	90.4	FR751068
648B-9	South Carolina, USA	Ipomoea batatas	Leaf curling	87.0	89.2	88.2	90.0	HQ333144
BR-Uti-08	Bahia, Brazil	Ipomoea batatas	Leaf curling	86.5	88.7	88.2	90.0	HQ393447
WS1-4	South Carolina, USA	Ipomoea setosa	Leaf curling	87.5	89.8	88.5	90.2	HQ333141
MP3-09	Pernambuco, Brazil	Ipomoea batatas	Leaf curling	86.8	87.6	87.8	89.7	HQ393470
*TYLCV	Masan, South Korea	Lycopersicon esculentum	Leaf curling	63.8	67.2	66.5	69.6	HM130912

Table 1 Comparison of the Bali SPLCV isolate's nucleotide (nt) and amino acid (aa) sequences to isolates from other countries found in Gen-Bank

*TYLCV: Tomato yellows leaf curl virus as out group; nt (nucleotide) and aa (amino acid)

Acknowledgements The research funded by Research Institute and Community Service from University of Mahasaraswati Denpasar with contract No. K.100/B.01.01/LPPM-UNMAS/V/2021.

Declarations

Conflict of interest The authors state that they are not implicated in any conflict of interest.

Human and animal rights This study did not involve human or animal subjects. Hence, ethical standards were not required.

References

- Albuquerque LC, Inoue-Nagata AK, Pinheiro B (2011) A novel monopartite begomovirus infecting sweet potato in Brazil. Arch Virol 156:1291–1294. https://doi.org/10.1007/s00705-011-1016-x
- Ameri M, Ayazpour K (2021) Molecular analysis of *Tomato yellow leaf* curl virus in Fars province, Iran. Indian Phytopathol. https://doi. org/10.1007/s42360-021-00420-5
- Briddon R, Bull S, Bedford I (2006) Occurrence of Sweet potato leaf curl virus in Sicily. Plant Pathol 55:286. https://doi.org/10.1111/j. 1365-3059.2005.01273.x
- Central Bureau of Statistics (2019) Vegetable Crop Production in Indonesia 2012–2018. In: Central Bureau of Statistics, Jakarta. https:// www.pertanian.go.id/Data5tahun/TPATAP-2017(pdf)/28ProdUbij alar.pdf
- Choi E, Lee G, Park J, Lee T, Choi H, Lee S (2012) Molecular characterization and an infectious clone construction of sweet potato leaf curl virus (SPLCV) isolated from Korea. Acta Virol 56:187–198. https://doi.org/10.4149/AV_2012_03_187
- Clark CA, Hoy MW (2006) Effects of common viruses on yield and quality of Beauregard sweetpotato in Louisiana. Plant Dis 90:83– 88. https://doi.org/10.1094/PD-90-0083

- Feng G, Yifu G, Pinbo Z (2000) Production and deployment of virusfree sweetpotato in China. Crop Prot 19:105–111. https://doi.org/ 10.1016/S0261-2194(99)00085-X
- Kim J, Kil EJ, Kim S, Seo H, Byun HS, Park J, Chung MN, Kwak HR, Kim MK, Kim CS, Yang JW, Lee KY, Choi HS, Lee S (2015) Seed transmission of Sweet potato leaf curl virus in sweet potato (*Ipomoea batatas*). Plant Pathol 64:1284–1291
- Kwak HR, Kim MK, Chung MN (2006) Virus disease incidences of sweet potatoes in Korea. Plant Pathol J 22:239–247
- Li R, Salih S, Hurtt S (2004) Detection of geminiviruses in sweetpotato by polymerase chain reaction. Plant Dis 88:1347–1351. https:// doi.org/10.1094/PDIS.2004.88.12.1347
- Moyer JW, Salazar LF (1989) Viruses and virus-like diseases of sweetpotato. Plant Dis 73:451–455. https://doi.org/10.1094/PD-73-0451
- Paprotka T, Boiteux L, Fonseca M (2010) Genomic diversity of sweet potato geminiviruses in a Brazilian germplasm bank. Virus Res 149:224–233. https://doi.org/10.1016/j.virusres.2010.02.003
- Simmons AM, Ling KS, Harrison HF, Jackson DM (2009) Sweet potato leaf curl virus: efficiency of acquisition, retention and transmission by *Bemisia tabaci* (Hemiptera: Aleyrodidae). Crop Prot 28:1007–1011. https://pubag.nal.usda.gov/pubag/download-PDF.xhtml?content=PDF&id=35531
- Wasswa P, Otto B, Maruthi M, Mukasa S, Monger W, Gibson R (2011) First identification of a sweet potato begomovirus (sweepovirus) in Uganda: characterization, detection and distribution. Plant Pathol 60:1030–1039. https://doi.org/10.1111/j.1365-3059.2011. 02464.x
- Zhang SC, Ling KS (2011) Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between Sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol 156:955–968. https://doi.org/10. 1007/s00705-011-0930-2

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.