Registration Form

5th International Conference on Bioscience and Technology September 20, 2014 International Research Collaboration on Bioscience and Technology : for a Better Achievement and Sustainability Udayana University, Denpasar Bali, Indonesia

Title	: Prof 🗹 Dr 🗹 Mr Ms					
Name	: Dr. Ir I Ketut Sumantra, MP					
University/Institution	: Agriculture Faculty , Mahasaraswati University					
Preferred Mailing Address: Jalan Kamboja 11A Denpasar						
City	: Denpasar					
State/Province	: Bali					
Zip/Postal Code	: 80233					
Country	: Indonesia					
Telephone	: (03361) 8476465 HP : 08123651427 Fax: (0361) 227019					
Email	: <u>ketut.sumantra@yahoo.com</u> or info@unmasac.id					
Paper/Poster Title	: PHENOTYPIC AND GENOTYPIC OF SALAK (<i>Salacca zalacca</i> var. amboinensis) cv. GULAPASIR ON DIFFERENT GROWING ENVIRONMENTS					
I Will attend on 5th ICBB Bali as (Please check appropriate box):						
☑ Oral presenter						

□ Poster presenter

□ General participant

JADWAL ACARA THE 5th INTERNATIONAL CONFERENCE ON BIOSCIENCE AND BIOTECHNOLOGY 20 SEPTEMBER 2014

Time	Activities	Venue
08:00-09:00 09:00-09:30 09:00-09:10 09:10-09:20 09:20-09:30	Registration Opening Ceremony Welcome speech by Dean Faculty of Agriculture Udayana University Welcome speech by Japan Consulate General Welcome speech and officially opened the conference by Rector of Udayana University	School of Postgraduate 3 rd floor Udayana University
09:30-10:00	Keynote Speaker Prof. Dr. Mamoru YAMADA (Dean of Faculty of Agriculture Yamaguchi University) "Potentials of Microbes in Tropical Areas and Their Application for High-temperature Fermentation"	
10:00-11:30 10:00-10:15 10:15-10:30 10:30-10:45 10:45-11:00 11:00-11:30	Section I Plenary Speaker (invited speakers) Prof. Yamashita - JSPS ASEAN Coordinator Mr. Daisuke Yamada - JSPS Akita University Center for Research and IPR Akita University Discussion	
11:30-13:00 11:30-11:45 11:45-12:00 12:00-12:15 12:15-12:30 12:30-13:00	Section II Plenary Speaker (invited speakers) Prof. Irfan D. Priambada, Ph.D - UGM Kahar Muzakar, Ph.D. (Dikti/Univ. Jember) Prof. I G.P. Wirawan, Ph.D (Unud) Prof. I M.S. Mahendra, Ph.D. (Unud) Discussion	
13:00-14:00	Lunch	
14:00-16:45	Parallel session presentation	School of Postgraduate and Faculty of Agriculture Udayana University
16:45 -17.00	Closing ceremony	School of Postgraduate 3 rd floor Udayana University

PHENOTYPIC AND GENOTYPIC OF SALAK (Salacca zalacca var. amboinensis) cv. GULAPASIR ON DIFFERENT GROWING ENVIRONMENTS

I KETUT SUMANTRA

Department of Agrotechnology, Faculty of Agriculture, Mahasaraswati University, Denpasar, Bali, Indonesia JI. Kamboja 11 A Denpasar-Bali (0361) 265322: e-mail : ketut.sumantra@yahoo.com

Why Salacca is important

Bali salacca plants (Salacca zalacca var. Amboinensis) is an Indonesian indigenus commodity

The Advantages: sweet fruit flavors although the fruit is still young,thick flash, seeds are not attached to the fruit flesh, price 4-5 times more expensive than bali salak

Potential and Opportunities :

On Year 2008 Salacca Demand = 420,000 tons per year; Export 32.75 tons and the rest to the needs of the domestic market. On the same time Bali salak production : 42.28 tons. The development of agro-tourism and agro-industry

At the beginning, the developments of Gulapasir salacca were limited in Karangasem regency. Now, it has been extended to the other regencies such us Tabanan, regencies

THE DIFFERENT OF SALACCA

Salacca zalacca var. zalacca Salacca zalacca var. amboinensis

Decoesis:

Inflorescence are male and female inflorescences on different plants Monoesis :

Separate male flowers and female flowers, but there is in one plant

It can be developed by using seeds(agamospermi) (Kriswiyanti *et al.*, 2008)

THE QUESTION IS ?

Whether this phenotypic and genotypic property if developed into other areas is still the same as in the area of origin in Sibetan Karangasem.

Research aims

Expected

To study the variability of phenotypic and genotypic of Gulapasir salacca plants growing on different environments in Bali To provide information and an overview of the phenotypic and genotypic variability Gulapasir salacca plants growing in different conditions

Selection of the parent plant in order to get aquality seeds for sidling practices

RESEARCH METHOD

TABANAN Saribuana (T-1) 460 m asl, Pajahan (T-2) 570 m asl and Bangsing (T3) 700 m asl

KARANGASEM

Telaga Sibetan (A-1) 450 asl, Kecing (A-2) 550 m asl, Jungutan (A-3) 670 m asl,

The basic framework of thought

IV. METODE PENELITIAN

Phenotype observ \Rightarrow morphological appearance of plants

Genotype observation \rightarrow Analyze the DNA banding pattern Using RAPD techniques

Phenotype observ \Rightarrow the book's Individual Guide Testing salacca species (Deptan, 2006) : The number of leafs, the length of leaf, the wide of leafs, the length of sphata, the length of flower without sphata, the number of flower per sphata, the number of fruits per cluster, the number of seed, thick flash, fruit shape.

RAPD Analysisi :

- 1. DNA isolation using Pamidimarri et al. (2009) procedures.
- 2. Amplification reaction and electroforesis
- 3. Selection of primary Nandariyah (2009) primary OPA (OPA3, OPA4, OPA6, OPA11, OPA 15, OPA16, OPA 17, OPA18 and OPA 19

Analysis of data

Phenotipic analiysis : (1) Barlett test, (2) The value ratio of variance with standard deviation and cluster analiysis

Analysis of the data genotype by comparing the banding pattern : score 1 when bands that appear; Score 0 if the bands not appear. Cluster analysis use UPGMA with *SIMQUAL function*. The correlation by using NTSYS programe with *MXCOMP function*. The similarty of genotype were calculated based on the coefficients Dice :

2 n ab S = -----

na + nb

Remarks : S = similarity coeficient a and b = two individual were compared n ab = the number of DNA bands the same position both on the individual a or b na = the number of DNA bands on individual a nb = the number of DNA bands on individual b

RESULTS AND DISCUSSION

σ

Table 3. Phenotypic characters (quantitative) based on Bartlett test and ratio of the variance () with standard deviation (Sd)

	Locations					Bartlett Test			Ratio dan Sd				
Characters	A1	A2	A3	T1	T2	Т3	X ² hit.	P-	² f	Sd _{2f}	2Sd _{2f}	С	CC
								value					
Number of leaflets	75.57	76.43	75	76.29	75.57	75	4.17 tn	0.525	3.231	0.044	0.11	L	S
Length of leaftets (cm)	57.86	57.89	57.81	59.14	59.57	59.43	2.85 tn	0.724	6.827	0.063	0.127	L	S
The Width of leaf (cm)	3.74	3.86	3.81	3.73	3.7	3.63	0.30 tn	0.908	0.161	0.011	0.021	L	S
The length of sheath (cm)	27.57	27.59	27.21	26.27	26.27	25.76	0.69 tn	0.632	8.198	0.068	0.136	L	S
Thelengthofflowerwithoutsheath(cm)	12.81	12.76	12.74	12.64	12.69	12.54	11.84*	0.037	0.086	0.012	0.014	L	L
Number of flowers bunches ⁻¹	1.86	1.71	1.71	1.57	1.57	1.43	0.21 tn	0.958	0.333	0.014	0.028	L	S
The number of fruit bunches ⁻¹	21.29	20.57	18.57	18.29	19.29	16.86	21.21 **	0.001	5.93	0.059	0.121	L	L
The number of seed fruit ⁻¹	1.57	1.57	1.14	1.57	1.57	1.14	0.64 tn	0.671	0.251	0.012	0.024	L	S
Thick flesh fruit (cm)	0.69	0.64	0.57	0.61	0.61	0.4	15.60 **	0.008	0.013	0.003	0.005	L	L
Ratio L/D	0.63	0.59	0.81	0.73	0.7	0.61	5.40 tn	0.369	0.01	0.002	0.004	L	S

Figure 1. Phenotypic Dendrogram of Gulapasir salacca from six different locations (A= Karangasem: A1=Telaga; A2=Kecing; A3 =Jungutan; T= Tabanan : T1= Saribuana; T2=Pajahan; T3 = Bangsing) Table 4. Level of polymorphism of three primers used based on the pattern of DNA bands of Gulapasir salacca of six different location

Primer	nucleotide sequences 5'	nucleotideTotalsequencesnumber of'bands		The number of monomorphic	
	3'				
OPA 3	AGT CAG CCAC	15	11 (73.33%)	4 (26.66%)	
OPA 17	GAC CGC TTGT	8	8 (100%)	0	
OPA 19	CAA ACG TCGG	5	5 (100%)	0	
Total		28	24 (85.71%)	4 (14.28%)	

OPA 3 Oby 3 Figure 2. DNA banding pattern of salacca from various locations Based on 3 random primer: OPA3, OPA17, OPA 19 kb, A = Karangasem: A1 (Telaga), A2 (Kecing), A3 (Jungutan), T = Tanbanan : T1 (Saribuana), T2 (Pajahan), T3 (Bangsing).

Figure 3. Dendrogram DNA banding pattern of Gulapasir salacca from six different locations (A = Karangasem; A1 = Telaga; A2 = kecing; A3 = Jungutan, T = Tabanan: T1 = Saribuana; T2 = Pajahan; T3 = Bangsing)

CONCLUSSION AND SUGGESTION

Salacca planted in Tabanan and Karangasem showed phenotypic and genotypic variation. Phenotypic similarity coefficient based on ten quantitative characters ranged from 0.58 - 0.93 and the coefficient of genetic similarity based on three primary ranges from 0,50 - 0.80 which was divided into two main groups, namely groups of Karangasem and Tabanan Gulapasir salacca.

For the program of expansion of Gulapasir salacca should be:

The selection of mother plants for seed candidates were advised to take the seeds from the plants that were already adapted to the local environment.

To reduce variation in plant propagation Phonotype of Gulapasir salacca was done vegetatively by grafting system or by tissue culture techniques.

Thank you

Thank you

