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 40 
Abstract. The brown planthopper is an important pest on rice crops in Indonesia. The genetic diversity of BPH isolates in 41 

western Indonesia has been extensively reported, whereas eastern Indonesia isolates have not been reported. This research aims to 42 
analyze genetic diversity and evaluate the BPH attack's intensity on Bali rice plants. The research method used was an observation of 43 
attack percentage, population dynamics, attack intensity, and genetic diversity of BPH in 9 districts in Bali (Badung, Gianyar, 44 
Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana). Molecular identification was carried out on N. 45 
lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in the districts of Gianyar, Bangli, Jembrana, and Badung. The 46 
BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 43.67 BPH per rice hill. In 47 
general, rice varieties grown in all observation locations were susceptible to BPH, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 48 
In the Ciherang and IR-64 varieties, the highest attack intensity average value reached 30%. The sequence of N. lugens isolate from Bali 49 
Jembrana showed the highest nucleotide and amino acid homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype 50 
Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens biotype Y in rice plants for the first time in Indonesia. This study 51 
reported that Rice varieties Situbagendit and Inpari 32, previously resistant to BPH, are reported as susceptible to BPH. 52 

Keywords: susceptible variety, Situbagendit, Inpari 32, genetic diversity, attack intensity 53 
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Running title: The Brown Planthopper (Nilaparvata lugens Stal.) Attack and Its Genetic Diversity on Rice in Bali, Indonesia 55 

 56 

INTRODUCTION  57 

The brown planthopper (BPH) (Nilaparvata lugens Stal, Hemiptera: Delphacidae) is the most destructive rice 58 

pest in Indonesia. Repeated outbreaks of BPH in Indonesia are caused by continuous rice cultivation, extensive use, and 59 

over-application of insecticides (Baehaki and Mejaya 2015). This pest is vascular monophagous in rice (Cheng et al. 2013; 60 

Ferrater et al. 2015). Feeding by nymphs and imago at the base of the plant causes rapid wilting and drying of the plant 61 

(Bottrell and Schoenly 2012; Cheng et al. 2013; Bao and Zhang 2019). In addition, BPH is also a vector of Rice grassy 62 

stunt virus and Rice ragged stunt virus (Bao and Zhang 2019). At high population levels of N. lugens can cause significant 63 

losses in rice production (Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 2019).  64 

The BPH cannot tolerate winter in northern Asia, including Japan, Korea, and northern China (He et al. 2012; Fu 65 

et al. 2012; Fu et al. 2014). The population originally came from subtropical and tropical areas by flying long distances 66 

during the summer (Fu et al. 2014; Hu et al. 2014). The intensification of rice production triggered the BPH outbreak in 67 

Tropical Asia during the green revolution era in the 1970s and 1980s (Bottrell and Schoenly 2012). Until now, N. lugens is 68 

the main problem causing rice harvest failure in several countries. Inaccurate identification and prolonged identification of 69 

N. lugens are obstacles to its field management strategy.  70 

Traditionally, BPH has been identified at the species level by morphological features using anatomical 71 

characteristics, namely, wings, front, and external genitalia (Dupo and Barrion 2009). Accurate identification requires 72 

extensive expertise and experience and yet sometimes can lead to errors. Morphological identification by an entomologist 73 

can reduce the potential for errors. Practical morphological identification is only possible when dealing with small sample 74 

sizes and well-preserved specimens. Therefore, it is crucial to utilize a new identification method that is accurate, fast, 75 

time-saving, and suitable for large numbers of specimens. 76 

Molecular techniques with high reproducibility and fast results offer an excellent alternative to traditional 77 

morphological classification. Several mitochondrial and nuclear genes have been used as genetic markers to differentiate 78 

related species. These include the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, nuclear 12S-16S-18S 79 
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ribosomal RNA genes, and ITS1 and ITS2 internal transcription spacers (Fukunaga et al. 2000; Brengues et al. 2014; 80 

Gomez-Polo et al. 2014; Wang et al. 2016; Liu et al. 2018). ITS1 and ITS2 are nonfunctional spacers that separate the 81 

18S-5.8S and 5.8S-28S rRNA genes, respectively (Ji et al. 2003; Liu et al. 2018). As ITS sequences have low intra-species 82 

variation but high variation between species, they are helpful for species classification and phylogenetic analysis for 83 

morphologically similar organisms, both in prokaryotes and eukaryotes (Liu et al. 2009). Finally, from the molecular 84 

identification of the combined mitochondrial COI-COII and ten microsatellite marker loci (Winnie et al. 2020). 85 

The genetic diversity of N. lugens has been reported in several countries such as China, South Korea, Pakistan, 86 

India, and Malaysia (Jing et al. 2012; Zheng et al. 2021; Anant et al. 2021; Latif et al. 2012). The genetic diversity of N. 87 

lugens in Indonesia is widely reported in western Indonesia (Java Island) (Winnie et al. 2020; Chaerani et al. 2021). 88 

Reports on the genetic diversity of N. lugens in eastern Indonesia have not been found. Therefore, this study aims to 89 

analyze genetic diversity and determine the intensity of BPH attacks on rice plants in eastern Indonesia, especially Bali. 90 

MATERIALS AND METHODS  91 

Brown Planthopper Sampling from Rice Dwarf Disease Endemic Areas 92 

Samples were taken from nine locations in Bali Province (Badung, Gianyar, Klungkung, Bangli, Karangasem, 93 

Tabanan, Denpasar City, Buleleng, and Jembrana). The brown planthopper samples taken from rice plants were nymphs 94 

and imagos. Nymphs and imagos were used for total DNA extraction. After arriving at the laboratory, the nymphs and 95 

imago were stored dry at -20oC.  96 

 97 

Observation of BPH Attack Symptoms and Quantity of BPH Population/rice hill  98 

Observation of symptoms of BPH attack was carried out by observing symptoms of damage to rice plants due to 99 

BPH attack. The abundance of the BPH/rice hill population was obtained by counting all nymphs and imagoes obtained. 100 

Data on the population per cluster from 20 samples at each observation location were then averaged. 101 

 102 

BPH Attack Percentage 103 

The percentage of BPH attacks is calculated using the following formula: 104 

 105 
Note:  106 

P = Attack percentage (%)  107 

a = Number of rice hills affected by BPH  108 

b = Number of rice hills observed 109 

 110 

Damage Intensity 111 

Determination of scoring on symptoms of rice damage due to BPH attack is based on Table 1. The intensity of 112 

damage due to a BPH attack is determined using the formula: 113 

 114 
 115 

 116 

 117 

Note:  118 

I = Damage intensity  119 

Ni = The number of affected rice hills on the score i  120 

Vi = Score i  121 

N = The number of rice hills observed 122 

Z = Highest score  123 

 124 

Total DNA Extraction from Brown Planthopper 125 

Total DNA extraction of brown planthopper was obtained from one individual imago or one individual nymph 126 

based on the modified method of Goodwin et al. (1994). One individual imago was put into a microtube and then added 127 

with 100 μl of CTAB extraction buffer (2% CTAB, 1.4 M NaCl, 100 mM Tris-HCI, 20 mM EDTA, and 1% PVP (-40 128 

°C)). Next, 1 μl of proteinase K was added, then the insects were crushed using a micro-pistil, vortexed, and incubated in a 129 

water bath of 65°C for 3 minutes. After that, the tube was added with 100 μl CI (chloroform: isoamyl alcohol) in a ratio of 130 

24:1. The tube was then vortexed for 3 minutes and centrifuged at 10,000 rpm for 15 minutes. The supernatant formed was 131 

transferred to a new microtube (60 μl) and then added with 3 M NaOAc (pH 5.2), as much as 1/10 of the total volume of 132 
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the supernatant. Isopropanol was added up to 2/3 of the total volume of the supernatant, then incubated at -20°C for one 133 

night. The tube was centrifuged at 10,000 rpm for 10 min, and the supernatant was discarded. The pellets were washed 134 

with 100 μl of 80% ethanol (cold) and centrifuged at 8000 rpm for 5 minutes. In the final step, the supernatant was 135 

removed, and the pellet was dried for approximately 1 hour. It was then added with a solution of 20 μl TE and stored at -136 

20°C until used. 137 

 138 

Amplification of mtCOI Fragments Using the PCR Method  139 

PCR reactants were manufactured with a total volume of 25 μl consisting of 12.5 μl Go Tag Green Master Mix 140 

(Promega, US) and 9.5 μl ddH2O. DNA amplification of the mtCOI fragment was carried out using a pair of universal 141 

primers mtCOI LCO 1490 (3'-GGTCAACAAATCATAAAGATATTGG-5') and HCO 2198 (5'TAAACTTCA 142 

GGGTGACCA AAAAATCA-3') (Folmer et al. 1994) each 1 μl, and 1 μl DNA template. PCR reactions were carried out 143 

with a Perkin Elmer 480 Thermocycler (Applied Biosystem, US). The PCR reaction was initiated by initial denaturation 144 

for 5 min at 94°C. The PCR was continued for 35 cycles in the following order: 94°C for 1 minute, 52°C for 35 seconds, 145 

72°C for 1 minute 30 seconds, and a final extension of 72°C for 7 minutes. The PCR results were then analyzed in 1% 146 

agarose gel. The DNA fragments of mtCOI were visualized using a UV transilluminator after being immersed in a 2% 147 

ethidium bromide solution for 15 minutes and photographed with a digital camera. The result of amplification by PCR 148 

technique was in the form of mtCOI DNA fragments with a size of ± 710 base pairs (pb). 149 

 150 

Analysis of DNA Sequence Results 151 

Nucleotide Sequencing DNA fragment purification and mtCOI nucleotide sequencing were performed at PT. 1st 152 

Base, Malaysia. The results were then registered in the NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis of 153 

mtCOI DNA sequence data ChromasPro program was used to combine forward and reverse nucleotide sequences to obtain 154 

the mtCOI gene (ChromasPro version 2.01. 2006). The Bioedit program was used to compare mtCOI fragments between 155 

samples (Multiple alignments) (Hall 1999). The phylogenetic relationship was built by comparing the mtCOI sample 156 

fragments from the brown planthopper from Indonesia with the mtCOI fragments already stored in the NCBI GenBank 157 

(http://www.ncbi.nlm.nih.gov). The criteria for retrieving mtCOI fragments at GenBank were fragments with a nucleotide 158 

base length of ± 800 bp (Boykin et al. 2007) (Table 1). The phylogenetic tree was constructed using the PAUP 4.0b10 159 

program (Swofford 2002) with the maximum parsimony cladistic quantitative method. The cladogram was compiled using 160 

the Heuristic method. The cladogram used results from the strick consensus with the statistical bootstrap test to obtain a 161 

100% probability. 162 

RESULTS AND DISCUSSION 163 

The brown planthopper causes direct and indirect damage to rice plants. Direct damage was in the form of stunted 164 

and uneven growth of rice plants (Figure 1A and 1B), yellow plants (Figure 1C), and hopperburn caused by fluid in rice 165 

plant cells sucked by BPH nymphs, brachiptera (Fig. short wings), and macroptera (long wings) (Figures 1E and 1F). 166 

Indirect damage was caused by BPH, which acts as a vector of grass dwarf virus and empty dwarf virus, causing stunted 167 

rice plants (Figure 1D). Besides Bali or other parts of Indonesia, BPH attacks on rice crops were also reported in China, 168 

where hopperburn affected 60% of all examined crops (Hu et al. 2014). 169 

A percentage of BPH attacks of more than 50% was found in Gianyar, Bangli, Jembrana, and Badung Regencies 170 

(Table 2). The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 171 

43.67 BPH per rice hill (Table 2). Baehaki and Mejaya (2015) added that the economic threshold could be measured 172 

through the number or population of pests and planting age. BPH is said to have reached the economic threshold when the 173 

population of this pest was found in the field, as many as nine BPH per rice hill when the rice age was less than 40 DAP or 174 

18 BPH when the rice was more than 40 DAP (Baehaki and Mejaya 2015). In general, rice varieties grown in all 175 

observation locations in Bali were BPH susceptible varieties, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 176 

The dynamics of BPH development in the field can be influenced by several factors, including host plant factors 177 

and natural enemies (Horgan et al. 2015; Kobayashi 2016). The host plant factors that affect the BPH population are 178 

related to the age of the rice plant. When the observations were made, the rice plants were still in the vegetative phase, 179 

aged 4-6 WAP. According to Jing et al. (2014), naturally, BPH usually comes to young rice fields, and insects usually 180 

come in the first two weeks after planting. Thus, the brown planthopper in rice cultivation might be the first generation of 181 

planthoppers that have not yet reproduced because one BPH life cycle takes between 3-4 weeks (IRRI 2009). 182 

BPH observations in Denpasar, Tabanan, Karangasem, and Klungkung cities were dominated by macroptera 183 

imago (Table 2). According to Horgan et al. (2017), the planthopper that first came to the plantation was the macroptera 184 

planthopper as a winged immigrant planthopper. Meanwhile, in Badung, Gianyar, Buleleng, Bangli, and Jembrana 185 

regencies, nymphal BPH was dominated by BPH, and several individuals were in the imago phase of brachiptera and 186 

macroptera. The dominance of the nymph phase caused the population of BPH in Badung, Gianyar, Buleleng, Bangli, and 187 

Jembrana districts to be the highest when compared to the cities of Denpasar, Tabanan, Karangasem, and Klungkung. The 188 



 

presence of the brachiptera planthopper might be contributed to the increase in the nymph population (Baehaki and Mejaya 189 

2015). According to Horgan et al. (2015), rapid population growth usually occurs in groups with many young individuals. 190 

The average intensity of BPH attack on Ciherang and IR-64 varieties of rice was higher than in other varieties. In 191 

the Ciherang and IR-64 varieties of rice, the average value of the highest attack intensity was 30% (Figure 2). It is because 192 

farmers grow rice varieties Ciherang and IR-64 from year to year without any replacement of other varieties. Furthermore, 193 

rice varieties Ciherang and IR-64 became very susceptible to BPH attacks. In addition, BPH is a pest that begins to attack 194 

rice plants from a young age, even when the rice is still in the nursery. 195 

According to Sawada et al. (1993), fluctuations in BPH pest attacks are more influenced by the growth phase of 196 

the rice plant that is the host in the field. BPH pests are often found when rice plants are in the vegetative and generative 197 

stages (Bottrell and Schoenly 2012). Horgan et al. (2017) added that BPH pests could damage rice plants at all stages of 198 

growth and act as vectors for grass and dwarf viruses. BPH attack was higher when rice was in the vegetative phase than in 199 

the generative phase. It happens because the pests attack the young rice stalks. Considering the type of mouth of BPH, 200 

which is included in the suction, BPH can suck the liquid from the rice stems and cause the plant leaves to turn yellow 201 

(Anant et al. 2021). According to Choi et al. (2019), during the vegetative phase, food availability in the form of nitrogen 202 

is abundant in rice plants. Rice plants need nitrogen to form plant organs. Food is one of the factors that affect the life of 203 

insects. Qiu et al. (2004) continued that the N element absorbed by plants also serves as a source of nutrition for BPH. If 204 

food is available with good quality (suitable for pests), then the insect pest population will increase, and vice versa (Qiu et 205 

al. 2004). 206 

The mtCOI DNA band was only successfully amplified from the total DNA extraction of one imago or nymph 207 

and not more than one BPH imago. The mtCOI fragment that was successfully amplified corresponds to a size of ±710 bp 208 

in all samples from nine districts in Bali, namely Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar 209 

City, Buleleng, and Jembrana (Figure 3). Nucleotide and amino acid sequence analysis showed high homology with N. 210 

lugens sequences in the database at GenBank, 94.2 – 99.7% and 95.8 - 100%, respectively (Table 3). N. lugens sequences 211 

from Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana showed the 212 

highest nucleotide, and amino acid homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y, 213 

respectively. 99.5 -99.74% and 100% (Table 3). The results of the molecular detection of N. lugens using the PCR method 214 

in Bali, Indonesia, are the first reports of the molecular character of N. lugens in Indonesia. 215 

Samples from Indonesia formed a group with N. lugens biotype Y fragment mtCOI from Pakistan, India, South 216 

Korea, and China (Figure 4). This study found N. lugens biotype Y in rice plants for the first time in Indonesia. The 217 

Indonesian sample did not form separate groups according to the proximity of the district locations but formed a polytomy 218 

cladogram (Figure 4). This polytomy cladogram shows that the N. lugens between regencies (Badung, Gianyar, 219 

Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) were observed to have the same 220 

ancestry. These results indicate high locomotion ability with genetic mixing between N. lugens in Bali isolates. Similar 221 

conditions were also demonstrated in N. lugens among Asian isolates using mitochondrial sequences showing genetic 222 

mixing. It can also be correlated with the theory of long-distance migration of N. lugens, which migrates from the tropics 223 

(northern Vietnam) in April-May to temperate regions (China, Korea, and Japan) in June-July as shown based on 224 

meteorological studies (Otuka et al. 2008). The population of N. lugens is a long-distance migratory flight from the tropics 225 

to temperate Asia before modern pesticides are widely used in tropical rice. Due to the infrequent use of insecticides prior 226 

to the 1960s in the tropics, factors other than insecticides may have triggered long-wing movements to form N. lugens 227 

populations (Bottrell and Schoenly 2012). 228 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, and 4 have been found. Chen et al. (2011) reported that the 229 

brown planthopper is a highly adaptive insect because it can form new biotypes. In early 1975 the IR-26 rice variety from 230 

IRRI Philippines was introduced. The IR-26 variety was unique because it contained a Bph1 resistant gene to anticipate 231 

fluctuations in the brown planthopper population. However, in 1976 there was a great population explosion in several rice 232 

production centers due to changes in the brown planthopper population from biotype 1 to biotype 2. As an anticipatory 233 

measure against brown planthopper biotype 2, in 1980, the IR-42 rice variety (containing the bph2 resistant gene) was 234 

introduced from IRRI Philippines. Unfortunately, in 1981 there was another explosion in the brown planthopper 235 

population in Simalungun, North Sumatra, and several other areas due to changes in the brown planthopper population 236 

from biotype 2 to biotype 3. To deal with the brown planthopper biotype 3, rice variety IR-56 was introduced (containing 237 

the gene bph3 resistance) in 1983 and IR-64 (containing the bph1+ resistance gene) in 1986. The introduction process 238 

continues. In 1991, the IR-74 variety (containing the bph3 resistant gene) was introduced. In 2006, the resistance gene IR-239 

64 was broken because the brown planthopper population changed to biotype 4. The stability of the biotype zero brown 240 

planthoppers persisted for 41 years before becoming brown planthopper biotype 1. The change of brown planthopper 241 

biotype 1 to biotype 2 only took 4 years, and the change of biotype 2 brown planthopper to biotype 3 within 5 years. Until 242 

2005, the brown planthopper biotype 3 was still dominated by biotype 3, and in 2006 the biotype 4 brown planthopper 243 

began to develop. The long existence of the biotype 3 brown planthopper was caused by the development of the IR-64 244 

(bph1+) variety over a long period. IR-64 is a resistant variety (durable resistance) that can withstand changes in brown 245 

planthoppers to a more virulent biotype. 246 
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The continuous cultivation of IR-64 rice varieties by farmers in Bali led to the emergence of a new biotype BPH, 247 

namely Y. Insects of biotype Y originated from biotype 1 by eating YHY15 resistant varieties for more than two years for 248 

33 generations (Jing et al. 2012). Rice varieties YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 249 

This study shows great potential in the population of N. lugens to adapt to previously resistant rice varieties. This 250 

study reported that rice varieties Situbagendit and Inpari 32, previously resistant to BPH, were susceptible to BPH. This 251 

research can provide information to farmers not to continuously plant susceptible varieties, which could cause BPH 252 

epidemics in the field, as well as the emergence of new, more virulent BPH biotypes. Thus a new control strategy based on 253 

a forecasting system can be developed for the regional management of this insect. 254 

 255 

CONCLUTIONS 256 

N. lugens that attacks rice plants in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar 257 

City, Buleleng, and Jembrana) belongs to biotype Y. Symptoms of damage to rice plants are most severe in Badung 258 

Regency. Apart from Ciherang and IR-64 varieties, Situbagendit and Inpari 32 varieties are susceptible to BPH attack.  259 
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TABLES LIST 1 
 2 
Table 1. The damage score of rice plants due to BPH attack 3 

Score Appearance Description 

0  Healthy  No planthopper was found in any rice hill. 

1  Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice 

stalks had not yet overgrown with Dematium and Cladosporium fungi that followed the brown 

planthopper attack. 

3  Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice 

stems are overgrown with Dematium and Cladosporium fungi that follow the brown planthopper 

attack. 

5  Heavily 

damaged  

Rice  hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, 

stunted and black-looking tillers, and overgrown with Dematium and Cladosporium fungi. 

7  Partially dead  Some of the stems in the rice hills die, or the rice hills withers due to planthoppers attack. 

9  Hopperburn Rice  hills die from hopperburn 

Sumber: Baehaki (2012) 4 
 5 
Table 2.  Population and symptoms of BPH attack on rice plants in Bali 6 
Location Rice varieties Rice plant age (DAP) BPH attack 

percentage (%) 

BPH population 

abundance (individues/rice 

hills) 

Denpasar City Situbagendit, 

Inpari 32 

35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP= day after planting 7 
 8 
 9 
 10 



 1 
Table 3. Nucleotide (nt) and amino acid (aa) homology of N. lugens in rice from Bali, Indonesia, compared with N. lugens from other countries in GenBank 2 
Isolate Origin of 

isolate 

Biotype Accession 

number 

Homology nt (aa) (%) N. lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng Karangasem Klungkung Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

N. bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide), aa (amino acid), IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South Korea), CHN (China), N. bakeri and Sogatella furcifera from China was used as outgroups 3 
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FIGURES LIST 7 
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 22 

 23 

Figure 1. Symptoms of BPH attack on rice plants in Bali: A. rice plant growth is stunted; B. uneven plant growth (spots); C. yellow 24 
plant; D. dwarf rice plants; E. plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks. 25 
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Figure 2. The attack intensity of N. lugens on rice in Bali Province 27 
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 42 

Figure 3. DNA amplification of N. lugens in rice plants in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City, 2. Bagung, 3. 43 
Gianyar, 4. Tabanan, 5. Buleleng, 6. Karangasemt, 7. Klungkung, 8. Bangli, 9. Jembrana, and M. DNA marker 1 kb (Thermo Scientific) 44 
 45 
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Figure 4. The cladogram of the mtCOI fragment of N. lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, Bangli, 74 
Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of the world 75 
that had been deposited on the NCBI website. N. bakeri and Sogatella furcifera from China were used as outgroups. The numbers on the 76 
branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South 77 
Korea), and CHN (China), isolates marked with black dots are Bali isolates. 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
 100 
 101 
 102 
 103 
 104 
 105 
 106 
 107 
 108 
 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 
 139 
 140 



 

SUBMISSION CHECKLIST 141 

 142 

 143 

Ensure that the following items are present: 144 

 145 

The first corresponding author must be accompanied with contact details: Give mark (X) 

• E-mail address listihani9@gmail.com 

• Full postal address (incl street name and number (location), city, postal code, 

state/province, country) 

Banjar Triwangsa, 

Desa Tegallalang, 

Tegallalang, Gianyar, 

Bali 

• Phone and facsimile numbers (incl country phone code)  

  

All necessary files have been uploaded, and contain:  

• Keywords  

• Running titles  

• All figure captions  

• All tables (incl title and note/description)  

  

Further considerations  

• Manuscript has been “spell & grammar-checked” Better, if it is revised by a professional 

science editor or a native English speaker 

 

• References are in the correct format for this journal  

• All references mentioned in the Reference list are cited in the text, and vice versa  

• Colored figures are only used if the information in the text may be losing without those 

images 

 

• Charts (graphs and diagrams) are drawn in black and white images; use shading to 

differentiate 

 

 146 

  147 
 148 



COVERING LETTER 1 

 2 

Dear Editor-in-Chief, 3 

 4 

I am here with enclosed a research article, 5 

 6 

Title: 7 

The Brown Planthopper (Nilaparvata lugens Stal.) Attack and Its Genetic Diversity on Rice in Bali, Indonesia 

 8 

Author(s) name: 9 

1. Listihani Listihani  

2. Putu Eka Pasmidi Ariati 

3. I Gusti Ayu Diah Yuniti 

4. Dewa Gede Wiryangga Selangga  

 10 

Address 11 

(Fill in your institution’s name and address, your personal cellular phone and email) 12 

1. Listihani Listihani: Faculty of Agriculture and Business, Universitas Mahasaraswati Denpasar, Jl. Kamboja No.11A, 

Dangin Puri Kangin, North Denpasar, Bali  (Postal Code: 80233) Phone Number: 081227175626, Email: 

listihani9@gmail.com 

2. Putu Eka Pasmidi Ariati: Faculty of Agriculture and Business, Universitas Mahasaraswati Denpasar, Jl. Kamboja 

No.11A, Dangin Puri Kangin, North Denpasar, Bali (Postal Code: 80233) Phone Number: 081999131858, Email: 

ekapasmidi@gmail.com 

3. I Gusti Ayu Diah Yuniti: Faculty of Agriculture and Business, Universitas Mahasaraswati Denpasar, Jl. Kamboja 

No.11A, Dangin Puri Kangin, North Denpasar, Bali (Postal Code: 80233) Phone Number: 082339681358, Email: 

diahyuniti123@unmas.ac.id 

4. Dewa Gede Wiryangga Selangga: Faculty of Agriculture, Udayana University, Jl. P.B. Sudirman, Dangin Puri Klod, 

West Denpasar, Bali  (Postal Code: 80234) Phone Number: 081298948824, Email: dewanggaselangga@gmail.com 

 13 

For possibility publication on the journal: 14 

(fill in Biodiversitas or Nusantara Bioscience or mention the others) 15 

Biodiversitas 

 16 

Novelty: 17 

(state your claimed novelty of the findings versus current knowledge) 18 

Population dynamics and damage intensity of brown planthopper (BPH) and Nilaparvata lugens (Stal.) provide 

information about the economic threshold status of N. lugens in Bali. This study enriched information on the genetic 

diversity of N. lugens isolates from eastern Indonesia, particularly Bali. It is the first report of N. lugens biotype Y in 

Indonesia. In addition, the latest information in this study is that rice varieties Situbagendit and Inpari 32, which were 

previously resistant to BPH, are now found to be susceptible to BPH. This information is critical as a basis for controlling 

N. lugens in Indonesia 

 19 

Statements: 20 

This manuscript has not been published and is not under consideration for publication to any other journal or any other 

type of publication (including web hosting) either by me or any of my co‐authors.  

Author(s) has been read and agree to the Ethical Guidelines. 

 21 

List of five potential reviewers  22 

(Fill in names of five potential reviewers that agree to review your manuscpt and their email addresses. He/she should 23 

have Scopus ID and come from different institution with the authors; and from at least three different countries) 24 

1. Prof. Christopher A. Clark: USA, Email: cclark@agcenter.lsu.edu  

2. Prof. Keiko Natsuaki: Japan, Email: keiko@nodai.ac.jp 

3. Prof. Hermanu Triwidodo: Indonesia, Email: hermanutr@apps.ipb.ac.id  

4. Dr. Mimi Sutrawati: Indonesia, Email: mimi_sutrawati@unib.ac.id  

5. Professor Lynne Carpenter-Boggs: USA, Email: lcboggs@wsu.edu 

 

 25 

Place and date: 26 

Denpasar July 2022 

 

mailto:listihani9@gmail.com
mailto:dewanggaselangga@gmail.com
mailto:cclark@agcenter.lsu.edu
mailto:keiko@nodai.ac.jp


 

 27 

Sincerely yours, 28 

(fill in your name, no need scanned autograph) 29 

Listihani Listihani 

 

 30 
31 



 

The Brown Planthopper (Nilaparvata lugens) Attack and Its Genetic 32 

Diversity on Rice in Bali, Indonesia 33 

LISTIHANI LISTIHANI1♥, PUTU EKA PASMIDI ARIATI1, I GUSTI AYU DIAH YUNITI1, DEWA GEDE 34 

WIRYANGGA SELANGGA2  35 
1Faculty of Agriculture and Business, University of Mahasaraswati Denpasar 36 

2Faculty of Agriculture, Udayana University 37 
email: listihani9@gmail.com  38 

 39 

 40 
Abstract. The brown planthopper is an important pest on rice crops in Indonesia. The genetic diversity of BPH isolates in 41 

western Indonesia has been extensively reported, whereas eastern Indonesia isolates have not been reported. The research method used 42 
was an observation of attack percentage, population dynamics, attack intensity, and genetic diversity of BPH in 9 districts in Bali. 43 
Molecular identification was carried out on N. lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in the districts of 44 
Gianyar, Bangli, Jembrana, and Badung. The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung 45 
Regency, with 43.67 BPH per rice hill. In general, rice varieties grown in all observation locations were susceptible to BPH, such as 46 
Ciherang, IR-64, Inpari 32, and Situbagendit. In the Ciherang and IR-64 varieties, the highest attack intensity average value reached 47 
30%. The sequence of N. lugens isolate from Bali Jembrana showed the highest nucleotide and amino acid homology with N. lugens 48 
isolate FSD-034 from Pakistan (MK301229) biotype Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens biotype Y 49 
in rice plants for the first time in Indonesia. This study reported that Rice varieties Situbagendit and Inpari 32, previously resistant to 50 
BPH, are reported as susceptible to BPH. 51 

Keywords: susceptible variety, Situbagendit, Inpari 32, genetic diversity, attack intensity 52 

Abbreviations (if any): The BPH, Rice Plants 53 

Running title: The Brown Planthopper (Nilaparvata lugens.) Attack and Its Genetic Diversity on Rice in Bali, Indonesia 54 

 55 

INTRODUCTION  56 

The brown planthopper (BPH) (Nilaparvata lugens) is the most destructive rice pest in Indonesia. Repeated 57 

outbreaks of BPH in Indonesia are caused by continuous rice cultivation, extensive use, and over-application of 58 

insecticides (Baehaki and Mejaya 2015). This pest is vascular monophagous in rice (Cheng et al. 2013; Ferrater et al. 59 

2015). Feeding by nymphs and imago at the base of the plant causes rapid wilting and drying of the plant (Bottrell and 60 

Schoenly 2012; Cheng et al. 2013; Bao and Zhang 2019). In addition, BPH is also a vector of Rice grassy stunt virus and 61 

Rice ragged stunt virus (Bao and Zhang 2019). At high population levels of N. lugens can cause significant losses in rice 62 

production (Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 2019).  63 

The BPH cannot tolerate winter in northern Asia, including Japan, Korea, and northern China (He et al. 2012; Fu 64 

et al. 2012; Fu et al. 2014). The population originally came from subtropical and tropical areas by flying long distances 65 

during the summer (Fu et al. 2014; Hu et al. 2014). The intensification of rice production triggered the BPH outbreak in 66 

Tropical Asia during the green revolution era in the 1970s and 1980s (Bottrell and Schoenly 2012). N. lugens is the main 67 

problem causing rice harvest failure in several countries. Inaccurate identification and prolonged identification of N. 68 

lugens are obstacles to its field management strategy.  69 

Traditionally, BPH has been identified at the species level by morphological features using anatomical 70 

characteristics, namely, wings, front, and external genitalia (Dupo and Barrion 2009). Accurate identification requires 71 

extensive expertise and experience and yet sometimes can lead to errors. Morphological identification by an entomologist 72 

can reduce the potential for errors. Practical morphological identification is only possible when dealing with small sample 73 

sizes and well-preserved specimens. It is crucial to utilize a new identification method that is accurate, fast, time-saving, 74 

and suitable for large numbers of specimens. 75 

Molecular techniques with high reproducibility and fast results offer an excellent alternative to traditional 76 

morphological classification. Several mitochondrial and nuclear genes have been used as genetic markers to differentiate 77 

related species. These include the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, nuclear 12S-16S-18S 78 

ribosomal RNA genes (Fukunaga et al. 2000; Brengues et al. 2014; Gomez-Polo et al. 2014; Wang et al. 2016; Liu et al. 79 
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2018). As ITS sequences have low intra-species variation but high variation between species, they are helpful for species 80 

classification and phylogenetic analysis for morphologically similar organisms, both in prokaryotes and eukaryotes (Liu et 81 

al. 2009). Finally, from the molecular identification of the combined mitochondrial COI-COII and ten microsatellite 82 

marker loci (Winnie et al. 2020).. 83 

 84 

MATERIALS AND METHODS  85 

Brown Planthopper Sampling from Rice Dwarf Disease Endemic Areas 86 

Samples were taken from nine locations in Bali Province (Badung, Gianyar, Klungkung, Bangli, Karangasem, 87 

Tabanan, Denpasar City, Buleleng, and Jembrana). The brown planthopper samples taken from rice plants were nymphs 88 

and imagos. Nymphs and imagos were used for total DNA extraction. After arriving at the laboratory, the nymphs and 89 

imago were stored dry at -20oC.  90 

 91 

Observation of BPH Attack Symptoms and Quantity of BPH Population/rice hill  92 

Observation of symptoms of BPH attack was carried out by observing symptoms of damage to rice plants due to 93 

BPH attack. The abundance of the BPH/rice hill population was obtained by counting all nymphs and imagoes obtained. 94 

Data on the population per cluster from 20 samples at each observation location were then averaged. 95 

 96 

BPH Attack Percentage 97 

The percentage of BPH attacks is calculated using the following formula: 98 

 99 
Note:  100 

P = Attack percentage (%)  101 

a = Number of rice hills affected by BPH  102 

b = Number of rice hills observed 103 

 104 

Damage Intensity 105 

Determination of scoring on symptoms of rice damage due to BPH attack is based on Table 1. The intensity of 106 

damage due to a BPH attack is determined using the formula: 107 

 108 
 109 

 110 

 111 
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Note:  112 

I = Damage intensity  113 

Ni = The number of affected rice hills on the score i  114 

Vi = Score i  115 

N = The number of rice hills observed 116 

Z = Highest score  117 

 118 

Total DNA Extraction from Brown Planthopper 119 

Total DNA extraction of brown planthopper was obtained from one individual imago or one individual nymph. 120 

One individual imago was put into a microtube and then added with 100 μl of CTAB extraction buffer (2% CTAB, 1.4 M 121 

NaCl, 100 mM Tris-HCI, 20 mM EDTA, and 1% PVP (-40 °C)). Next, 1 μl of proteinase K was added, then the insects 122 

were crushed using a micro-pistil, vortexed, and incubated in a water bath of 65°C. After that, the tube was added with 100 123 

μl CI (chloroform: isoamyl alcohol) in a ratio of 24:1. The tube was then vortexed for 3 minutes and centrifuged at 10,000 124 

rpm for 15 minutes. The supernatant formed was transferred to a new microtube (60 μl) and then added with 3 M NaOAc 125 

(pH 5.2), as much as 1/10 of the total volume of the supernatant. Isopropanol was added up to 2/3 of the total volume of 126 

the supernatant, then incubated at -20°C for one night. The tube was centrifuged at 10,000 rpm for 10 min, and the 127 

supernatant was discarded. The pellets were washed with 100 μl of 80% ethanol (cold) and centrifuged at 8000 rpm for 5 128 

minutes. In the final step, the supernatant was removed, and the pellet was dried for approximately 1 hour. It was then 129 

added with a solution of 20 μl TE and stored at -20°C until used. 130 

 131 

Amplification of mtCOI Fragments Using the PCR Method  132 

PCR reactants were manufactured with a total volume of 25 μl consisting of 12.5 μl Go Tag Green Master Mix 133 

and 9.5 μl ddH2O. DNA amplification of the mtCOI fragment was carried out using a pair of universal primers mtCOI 134 

LCO 1490 (3'-GGTCAACAAATCATAAAGATATTGG-5') and HCO 2198 (5'TAAACTTCA GGGTGACCA 135 

AAAAATCA-3') (Folmer et al. 1994) each 1 μl, and 1 μl DNA template. PCR reactions were carried out with a Perkin 136 

Elmer 480 Thermocycler. The PCR reaction was initiated by initial denaturation for 5 min at 94°C. The PCR was 137 

continued for 35 cycles in the following order: 94°C for 1 minute, 52°C for 35 seconds, 72°C for 1 minute 30 seconds, and 138 

a final extension of 72°C for 7 minutes. The PCR results were then analyzed in 1% agarose gel. The DNA fragments of 139 

mtCOI were visualized using a UV transilluminator after being immersed in a 2% ethidium bromide solution for 15 140 

minutes and photographed with a digital camera.  141 

 142 

Analysis of DNA Sequence Results 143 

Nucleotide Sequencing DNA fragment purification and mtCOI nucleotide sequencing were performed at PT. 1st 144 

Base, Malaysia. The results were then registered in the NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis of 145 

mtCOI DNA sequence data ChromasPro program was used to combine forward and reverse nucleotide sequences to obtain 146 

the mtCOI gene. The Bioedit program was used to compare mtCOI fragments between samples (Multiple alignments) 147 

(Hall 1999). The phylogenetic relationship was built by comparing the mtCOI sample fragments from the brown 148 

planthopper from Indonesia with the mtCOI fragments already stored in the NCBI GenBank 149 

(http://www.ncbi.nlm.nih.gov). The criteria for retrieving mtCOI fragments at GenBank were fragments with a nucleotide 150 

base length of ± 800 bp (Boykin et al. 2007) (Table 1). The phylogenetic tree was constructed using the PAUP 4.0b10 151 

program (Swofford 2002) with the maximum parsimony cladistic quantitative method. The cladogram was compiled using 152 

the Heuristic method. The cladogram used results from the strick consensus with the statistical bootstrap test to obtain a 153 

100% probability. 154 

RESULTS AND DISCUSSION 155 

The brown planthopper causes direct and indirect damage to rice plants. Direct damage was in the form of stunted 156 

and uneven growth of rice plants (Figure 1A and 1B), yellow plants (Figure 1C), and hopperburn caused by fluid in rice 157 

plant cells sucked by BPH nymphs, brachiptera (Fig. short wings), and macroptera (long wings) (Figures 1E and 1F). 158 

Indirect damage was caused by BPH, which acts as a vector of grass dwarf virus and empty dwarf virus, causing stunted 159 

rice plants (Figure 1D). Besides Bali or other parts of Indonesia, BPH attacks on rice crops were also reported in China, 160 

where hopperburn affected 60% of all examined crops. 161 

A percentage of BPH attacks of more than 50% was found in Gianyar, Bangli, Jembrana, and Badung Regencies 162 

(Table 2). The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 163 

43.67 BPH per rice hill (Table 2). Baehaki and Mejaya (2015) added that the economic threshold could be measured 164 

through the number or population of pests and planting age. BPH is said to have reached the economic threshold when the 165 

population of this pest was found in the field, as many as nine BPH per rice hill when the rice age was less than 40 DAP or 166 

18 BPH when the rice was more than 40 DAP (Baehaki and Mejaya 2015). In general, rice varieties grown in all 167 

observation locations in Bali were BPH susceptible varieties, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 168 
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The dynamics of BPH development in the field can be influenced by several factors, including host plant factors 169 

and natural enemies (Horgan et al. 2015; Kobayashi 2016). The host plant factors that affect the BPH population are 170 

related to the age of the rice plant. When the observations were made, the rice plants were still in the vegetative phase. 171 

According to Jing et al. (2014), naturally, BPH usually comes to young rice fields, and insects usually come in the first two 172 

weeks after planting. Thus, the brown planthopper in rice cultivation might be the first generation of planthoppers that 173 

have not yet reproduced because one BPH life cycle takes between 3-4 weeks (IRRI 2009). 174 

BPH observations in Denpasar, Tabanan, Karangasem, and Klungkung cities were dominated by macroptera 175 

imago. According to Horgan et al. (2017), the planthopper that first came to the plantation was the macroptera planthopper 176 

as a winged immigrant planthopper. In Badung, Gianyar, Buleleng, Bangli, and Jembrana regencies, nymphal BPH was 177 

dominated by BPH, and several individuals were in the imago phase of brachiptera and macroptera. The dominance of the 178 

nymph phase caused the population of BPH in Badung, Gianyar, Buleleng, Bangli, and Jembrana districts to be the highest 179 

when compared to the cities of Denpasar, Tabanan, Karangasem, and Klungkung. The presence of the brachiptera 180 

planthopper might be contributed to the increase in the nymph population (Baehaki and Mejaya 2015).  181 

The average intensity of BPH attack on Ciherang and IR-64 varieties of rice was higher than in other varieties. In 182 

the Ciherang and IR-64 varieties of rice, the average value of the highest attack intensity was 30% (Figure 2). It is because 183 

farmers grow rice varieties Ciherang and IR-64 from year to year without any replacement of other varieties. Furthermore, 184 

rice varieties Ciherang and IR-64 became very susceptible to BPH attacks. In addition, BPH is a pest that begins to attack 185 

rice plants from a young age, even when the rice is still in the nursery. 186 

According to Sawada et al. (1993), fluctuations in BPH pest attacks are more influenced by the growth phase of 187 

the rice plant that is the host in the field. BPH pests are often found when rice plants are in the vegetative and generative 188 

stages (Bottrell and Schoenly 2012). Horgan et al. (2017) added that BPH pests could damage rice plants at all stages of 189 

growth and act as vectors for grass and dwarf viruses. BPH attack was higher when rice was in the vegetative phase than in 190 

the generative phase. It happens because the pests attack the young rice stalks. Considering the type of mouth of BPH, 191 

which is included in the suction, BPH can suck the liquid from the rice stems and cause the plant leaves to turn yellow 192 

(Anant et al. 2021). According to Choi et al. (2019), during the vegetative phase, food availability in the form of nitrogen 193 

is abundant in rice plants. Rice plants need nitrogen to form plant organs. Food is one of the factors that affect the life of 194 

insects. Qiu et al. (2004) continued that the N element absorbed by plants also serves as a source of nutrition for BPH. If 195 

food is available with good quality, then the insect pest population will increase, and vice versa (Qiu et al. 2004). 196 

The mtCOI DNA band was only successfully amplified from the total DNA extraction of one imago or nymph 197 

and not more than one BPH imago. The mtCOI fragment that was successfully amplified corresponds in all samples from 198 

nine districts in Bali, namely Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and 199 

Jembrana (Figure 3). Nucleotide and amino acid sequence analysis showed high homology with N. lugens sequences in the 200 

database at GenBank, 94.2 – 99.7% and 95.8 - 100% (Table 3). N. lugens sequences from Badung, Gianyar, Klungkung, 201 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana showed the highest nucleotide, and amino acid 202 

homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y, respectively. 99.5 -99.74% and 100%, 203 

respectively  (Table 3). The results of the molecular detection of N. lugens using the PCR method in Bali, Indonesia, are 204 

the first reports of the molecular character of N. lugens in Indonesia. 205 

Samples from Indonesia formed a group with N. lugens biotype Y fragment mtCOI from Pakistan, India, South 206 

Korea, and China (Figure 4). This study found N. lugens biotype Y in rice plants for the first time in Indonesia. The 207 

Indonesian sample did not form separate groups according to the proximity of the district locations but formed a polytomy 208 

cladogram (Figure 4). This polytomy cladogram shows that the N. lugens between regencies (Badung, Gianyar, 209 

Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) were observed to have the same 210 

ancestry. These results indicate high locomotion ability with genetic mixing between N. lugens in Bali isolates. Similar 211 

conditions were also demonstrated in N. lugens among Asian isolates using mitochondrial sequences showing genetic 212 

mixing. It can also be correlated with the theory of long-distance migration of N. lugens, which migrates from the tropics 213 

(northern Vietnam) in April-May to temperate regions (China, Korea, and Japan) in June-July as shown based on 214 

meteorological studies (Otuka et al. 2008).  215 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, and 4 have been found. Chen et al. (2011) reported that the 216 

brown planthopper is a highly adaptive insect. In early 1975 the IR-26 rice variety from IRRI Philippines was introduced. 217 

The IR-26 variety was unique because it contained a Bph1 resistant gene to anticipate fluctuations in the brown 218 

planthopper population. However, in 1976 there was a great population explosion in several rice production centers due to 219 

changes in the brown planthopper population from biotype 1 to biotype 2. As an anticipatory measure against brown 220 

planthopper biotype 2, in 1980, the IR-42 rice variety (containing the bph2 resistant gene) was introduced from IRRI 221 

Philippines. Unfortunately, in 1981 there was another explosion in the brown planthopper population in Simalungun, 222 

North Sumatra, and several other areas due to changes in the brown planthopper population from biotype 2 to biotype 3. 223 

To deal with the brown planthopper biotype 3, rice variety IR-56 was introduced (containing the gene bph3 resistance) in 224 

1983 and IR-64 (containing the bph1+ resistance gene) in 1986. The introduction process continues. In 1991, the IR-74 225 

variety (containing the bph3 resistant gene) was introduced. In 2006, the resistance gene IR-64 was broken because the 226 

brown planthopper population changed to biotype 4. The stability of the biotype zero brown planthoppers persisted for 41 227 

years before becoming brown planthopper biotype 1. The change of brown planthopper biotype 1 to biotype 2 only took 4 228 
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years, and the change of biotype 2 brown planthopper to biotype 3 within 5 years. Until 2005, the brown planthopper 229 

biotype 3 was still dominated by biotype 3, and in 2006 the biotype 4 brown planthopper began to develop.  230 

The continuous cultivation of IR-64 rice varieties by farmers in Bali led to the emergence of a new biotype BPH, 231 

namely Y. Insects of biotype Y originated from biotype 1 by eating YHY15 resistant varieties for more than two years for 232 

33 generations (Jing et al. 2012). Rice varieties YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 233 

This study shows great potential in the population of N. lugens to adapt to previously resistant rice varieties. This 234 

study reported that rice varieties Situbagendit and Inpari 32, previously resistant to BPH, were susceptible to BPH. This 235 

research can provide information to farmers not to continuously plant susceptible varieties, which could cause BPH 236 

epidemics in the field, as well as the emergence of new, more virulent BPH biotypes. Thus a new control strategy based on 237 

a forecasting system can be developed for the regional management of this insect. 238 

 239 

CONCLUTIONS 240 

N. lugens that attacks rice plants in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar 241 

City, Buleleng, and Jembrana) belongs to biotype Y. Symptoms of damage to rice plants are most severe in Badung 242 

Regency. Apart from Ciherang and IR-64 varieties, Situbagendit and Inpari 32 varieties are susceptible to BPH attack.  243 
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TABLES LIST 1 
 2 
Table 1. The damage score of rice plants due to BPH attack 3 

Score Appearance Description 

0  Healthy  No planthopper was found in any rice hill. 

1  Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice 

stalks had not yet overgrown with Dematium and Cladosporium fungi that followed the brown 

planthopper attack. 

3  Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice 

stems are overgrown with Dematium and Cladosporium fungi that follow the brown planthopper 

attack. 

5  Heavily 

damaged  

Rice hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, 

stunted and black-looking tillers, and overgrown with Dematium and Cladosporium fungi. 

7  Partially dead  Some of the stems in the rice hill die, or the rice hill withers due to planthoppers attack. 

9  Hopperburn Rice hills die from hopperburn 

Sumber: Baehaki (2012) 4 
 5 
Table 2.  Population and symptoms of BPH attack on rice plants in Bali 6 
Location Rice varieties Rice plant age (DAP) BPH attack 

percentage (%) 

BPH population 

abundance (individues/rice 

hills) 

Denpasar City Situbagendit, 

Inpari 32 

35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP= day after planting 7 
 8 
 9 
 10 



 1 
Table 3. Nucleotide (nt) and amino acid (aa) homology of N. lugens in rice from Bali, Indonesia, compared with N. lugens from other countries in GenBank 2 
Isolate Origin of 

isolate 

Biotype Accession 

number 

Homology nt (aa) (%) N. lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng Karangasem Klungkung Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

N. bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide), aa (amino acid), IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South Korea), CHN (China), N. bakeri and Sogatella furcifera from China was used as outgroups 3 

 4 

 5 

 6 



FIGURES LIST 7 
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 9 
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 17 

 18 

 19 

 20 

 21 

 22 

 23 

Figure 1. Symptoms of BPH attack on rice plants in Bali: A. rice plant growth is stunted; B. uneven plant growth (spots); C. yellow 24 
plant; D. dwarf rice plants; E. plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks. 25 
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Figure 2. The attack intensity of N. lugens on rice in Bali Province 27 
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Figure 3. DNA amplification of N. lugens in rice plants in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City, 2. Bagung, 3. 43 
Gianyar, 4. Tabanan, 5. Buleleng, 6. Karangasemt, 7. Klungkung, 8. Bangli, 9. Jembrana, and M. DNA marker 1 kb (Thermo Scientific) 44 
 45 
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Figure 4. The cladogram of the mtCOI fragment of N. lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, Bangli, 74 
Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of the world 75 
that had been deposited on the NCBI website. N. bakeri and Sogatella furcifera from China were used as outgroups. The numbers on the 76 
branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South 77 
Korea), and CHN (China), isolates marked with black dots are Bali isolates. 78 
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 40 
Abstract. The brown planthopper is an important pest on rice crops in Indonesia. The genetic diversity of BPH isolates in 41 

western Indonesia has been extensively reported, whereas eastern Indonesia isolates have not been reported. This research aims to 42 
analyze genetic diversity and evaluate the BPH attack's intensity on Bali rice plants. The research method used was an observation of 43 
attack percentage, population dynamics, attack intensity, and genetic diversity of BPH in 9 districts in Bali (Badung, Gianyar, 44 
Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana). Molecular identification was carried out on N. 45 
lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in the districts of Gianyar, Bangli, Jembrana, and Badung. The 46 
BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 43.67 BPH per rice hill. In 47 
general, rice varieties grown in all observation locations were susceptible to BPH, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 48 
In the Ciherang and IR-64 varieties, the highest attack intensity average value reached 30%. The sequence of N. lugens isolate from Bali 49 
Jembrana showed the highest nucleotide and amino acid homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype 50 
Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens biotype Y in rice plants for the first time in Indonesia. This study 51 
reported that Rice varieties Situbagendit and Inpari 32, previously resistant to BPH, are reported as susceptible to BPH. 52 

Keywords: attack intensity, genetic diversity, Inpari 32, Situbagendit, susceptible variety  53 

Abbreviations (if any): The BPH, Rice Plants 54 

Running title: The Brown Planthopper (Nilaparvata lugens Stal.) Attack and Its Genetic Diversity on Rice in Bali, Indonesia 55 

 56 

INTRODUCTION  57 

The brown planthopper (BPH) (Nilaparvata lugens Stal, Hemiptera: Delphacidae) is the most destructive rice 58 

pest in Indonesia. Repeated outbreaks of BPH in Indonesia are caused by continuous rice cultivation, extensive use, and 59 

over-application of insecticides (Baehaki and Mejaya 2015). This pest is vascular monophagous in rice (Cheng et al. 2013; 60 

Ferrater et al. 2015). Feeding by nymphs and imago at the base of the plant causes rapid wilting and drying of the plant 61 

(Bottrell and Schoenly 2012; Cheng et al. 2013; Bao and Zhang 2019). In addition, BPH is also a vector of Rice grassy 62 

stunt virus and Rice ragged stunt virus (Bao and Zhang 2019). At high population levels of N. lugens can cause significant 63 

losses in rice production (Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 2019).  64 

The BPH cannot tolerate winter in northern Asia, including Japan, Korea, and northern China (He et al. 2012; Fu 65 

et al. 2012; Fu et al. 2014). The population originally came from subtropical and tropical areas by flying long distances 66 

during the summer (Fu et al. 2014; Hu et al. 2014). BPH infestation in temperate climates originated from annual 67 

migrations from tropical Asia and China (He et al. 2012). During autumn, BPH re-migrates (north-to-south) and BPH 68 

populations have been studied in China and India (Bottrell and Schoenly 2012). Such return migration may help explain 69 

how long-distance migration is maintained in the winter.  70 

The intensification of rice production triggered the BPH outbreak in Tropical Asia during the green revolution era 71 

in the 1970s and 1980s (Bottrell and Schoenly 2012). Until now, N. lugens is the main problem causing rice harvest failure 72 

in several countries. Inaccurate identification and prolonged identification of N. lugens are obstacles to its field 73 

management strategy.  74 

Traditionally, BPH has been identified at the species level by morphological features using anatomical 75 

characteristics, namely, wings, front, and external genitalia (Dupo and Barrion 2009). Accurate identification requires 76 

extensive expertise and experience and yet sometimes can lead to errors. Morphological identification by an entomologist 77 

can reduce the potential for errors. Practical morphological identification is only possible when dealing with small sample 78 
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sizes and well-preserved specimens. Therefore, it is crucial to utilize a new identification method that is accurate, fast, 79 

time-saving, and suitable for large numbers of specimens. 80 

Molecular techniques with high reproducibility and fast results offer an excellent alternative to traditional 81 

morphological classification. Several mitochondrial and nuclear genes have been used as genetic markers to differentiate 82 

related species. These include the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, nuclear 12S-16S-18S 83 

ribosomal RNA genes, and ITS1 and ITS2 internal transcription spacers (Fukunaga et al. 2000; Brengues et al. 2014; 84 

Gomez-Polo et al. 2014; Wang et al. 2016; Liu et al. 2018). ITS1 and ITS2 are nonfunctional spacers that separate the 85 

18S-5.8S and 5.8S-28S rRNA genes, respectively (Ji et al. 2003; Liu et al. 2018). As ITS sequences have low intra-species 86 

variation but high variation between species, they are helpful for species classification and phylogenetic analysis for 87 

morphologically similar organisms, both in prokaryotes and eukaryotes (Liu et al. 2009). Finally, from the molecular 88 

identification of the combined mitochondrial COI-COII and ten microsatellite marker loci (Winnie et al. 2020). 89 

The genetic diversity of N. lugens has been reported in several countries such as China, South Korea, Pakistan, 90 

India, and Malaysia (Jing et al. 2012; Zheng et al. 2021; Anant et al. 2021; Latif et al. 2012). The genetic diversity of N. 91 

lugens in Indonesia is widely reported in western Indonesia (Java Island) (Winnie et al. 2020; Chaerani et al. 2021). 92 

Reports on the genetic diversity of N. lugens in eastern Indonesia have not been found. Therefore, this study aims to 93 

analyze genetic diversity and determine the intensity of BPH attacks on rice plants in eastern Indonesia, especially Bali. 94 

MATERIALS AND METHODS  95 

Brown Planthopper Sampling from Rice Dwarf Disease Endemic Areas 96 

Samples were taken from nine locations in Bali Province (Badung, Gianyar, Klungkung, Bangli, Karangasem, 97 

Tabanan, Denpasar City, Buleleng, and Jembrana). The brown planthopper samples taken from rice plants were nymphs 98 

and imagos. Nymphs and imagos were used for total DNA extraction. After arriving at the laboratory, the nymphs and 99 

imago were stored dry at -20oC.  100 

 101 

Observation of BPH Attack Symptoms and Quantity of BPH Population/rice hill  102 

Observation of symptoms of BPH attack was carried out by observing symptoms of damage to rice plants due to 103 

BPH attack. The abundance of the BPH/rice hill population was obtained by counting all nymphs and imagoes obtained. 104 

Data on the population per cluster from 20 samples at each observation location were then averaged. 105 

 106 

BPH Attack Percentage 107 

The percentage of BPH attacks is calculated using the following formula: 108 

 109 
Note:  110 

P = Attack percentage (%)  111 

a = Number of rice hills affected by BPH  112 

b = Number of rice hills observed 113 

 114 

Damage Intensity 115 

Determination of scoring on symptoms of rice damage due to BPH attack is based on Table 1. The intensity of 116 

damage due to a BPH attack is determined using the formula (Erdiansyah and Damanhuri 2018): 117 

 118 
 119 

 120 

 121 

Note:  122 

I = Damage intensity  123 

Ni = The number of affected rice hills on the score i  124 

Vi = Score i  125 

N = The number of rice hills observed 126 

Z = Highest score  127 

 128 

Total DNA Extraction from Brown Planthopper 129 

Total DNA extraction of brown planthopper was obtained from one individual imago or one individual nymph 130 

based on the modified method of Goodwin et al. (1994). One individual imago was put into a microtube and then added 131 



 

with 100 μl of CTAB extraction buffer (2% CTAB, 1.4 M NaCl, 100 mM Tris-HCI, 20 mM EDTA, and 1% PVP (-40 132 

°C)). Next, 1 μl of proteinase K was added, then the insects were crushed using a micro-pistil, vortexed, and incubated in a 133 

water bath of 65°C for 3 minutes. After that, the tube was added with 100 μl CI (chloroform: isoamyl alcohol) in a ratio of 134 

24:1. The tube was then vortexed for 3 minutes and centrifuged at 10,000 rpm for 15 minutes. The supernatant formed was 135 

transferred to a new microtube (60 μl) and then added with 3 M NaOAc (pH 5.2), as much as 1/10 of the total volume of 136 

the supernatant. Isopropanol was added up to 2/3 of the total volume of the supernatant, then incubated at -20°C for one 137 

night. The tube was centrifuged at 10,000 rpm for 10 min, and the supernatant was discarded. The pellets were washed 138 

with 100 μl of 80% ethanol (cold) and centrifuged at 8000 rpm for 5 minutes. In the final step, the supernatant was 139 

removed, and the pellet was dried for approximately 1 hour. It was then added with a solution of 20 μl TE and stored at -140 

20°C until used. 141 

 142 

Amplification of mtCOI Fragments Using the PCR Method  143 

PCR reactants were manufactured with a total volume of 25 μl consisting of 12.5 μl Go Tag Green Master Mix 144 

(Promega, US) and 9.5 μl ddH2O. DNA amplification of the mtCOI fragment was carried out using a pair of universal 145 

primers mtCOI LCO 1490 (3'-GGTCAACAAATCATAAAGATATTGG-5') and HCO 2198 (5'TAAACTTCA 146 

GGGTGACCA AAAAATCA-3') (Folmer et al. 1994) each 1 μl, and 1 μl DNA template. PCR reactions were carried out 147 

with a Perkin Elmer 480 Thermocycler (Applied Biosystem, US). The PCR reaction was initiated by initial denaturation 148 

for 5 min at 94°C. The PCR was continued for 35 cycles in the following order: 94°C for 1 minute, 52°C for 35 seconds, 149 

72°C for 1 minute 30 seconds, and a final extension of 72°C for 7 minutes. The PCR results were then analyzed in 1% 150 

agarose gel. The DNA fragments of mtCOI were visualized using a UV transilluminator after being immersed in a 2% 151 

ethidium bromide solution for 15 minutes and photographed with a digital camera. The result of amplification by PCR 152 

technique was in the form of mtCOI DNA fragments with a size of ± 710 base pairs (pb). 153 

 154 

Analysis of DNA Sequence Results 155 

Nucleotide Sequencing DNA fragment purification and mtCOI nucleotide sequencing were performed at PT. 1st 156 

Base, Malaysia. The results were then registered in the NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis of 157 

mtCOI DNA sequence data ChromasPro program was used to combine forward and reverse nucleotide sequences to obtain 158 

the mtCOI gene (ChromasPro version 2.01. 2006). The Bioedit program was used to compare mtCOI fragments between 159 

samples (Multiple alignments) (Hall 1999). The phylogenetic relationship was built by comparing the mtCOI sample 160 

fragments from the brown planthopper from Indonesia with the mtCOI fragments already stored in the NCBI GenBank 161 

(http://www.ncbi.nlm.nih.gov). The criteria for retrieving mtCOI fragments at GenBank were fragments with a nucleotide 162 

base length of ± 800 bp (Boykin et al. 2007) (Table 1). The phylogenetic tree was constructed using the PAUP 4.0b10 163 

program (Swofford 2002) with the maximum parsimony cladistic quantitative method. The cladogram was compiled using 164 

the Heuristic method. The cladogram used results from the strick consensus with the statistical bootstrap test to obtain a 165 

100% probability. 166 

RESULTS AND DISCUSSION 167 

The brown planthopper causes direct and indirect damage to rice plants. Direct damage was in the form of stunted 168 

and uneven growth of rice plants (Figure 1A and 1B), yellow plants (Figure 1C), and hopperburn caused by fluid in rice 169 

plant cells sucked by BPH nymphs, brachiptera (Fig. short wings), and macroptera (long wings) (Figures 1E and 1F). 170 

Indirect damage was caused by BPH, which acts as a vector of grass dwarf virus and empty dwarf virus, causing stunted 171 

rice plants (Figure 1D). Besides Bali or other parts of Indonesia, BPH attacks on rice crops were also reported in China, 172 

where hopperburn affected 60% of all examined crops (Hu et al. 2014). 173 

A percentage of BPH attacks of more than 50% was found in Gianyar, Bangli, Jembrana, and Badung Regencies 174 

(Table 2). The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 175 

43.67 BPH per rice hill (Table 2). Baehaki and Mejaya (2015) added that the economic threshold could be measured 176 

through the number or population of pests and planting age. BPH is said to have reached the economic threshold when the 177 

population of this pest was found in the field, as many as nine BPH per rice hill when the rice age was less than 40 DAP or 178 

18 BPH when the rice was more than 40 DAP (Baehaki and Mejaya 2015). In general, rice varieties grown in all 179 

observation locations in Bali were BPH susceptible varieties, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 180 

The dynamics of BPH development in the field can be influenced by several factors, including host plant factors 181 

and natural enemies (Horgan et al. 2015; Kobayashi 2016). The host plant factors that affect the BPH population are 182 

related to the age of the rice plant. When the observations were made, the rice plants were still in the vegetative phase, 183 

aged 4-6 WAP. According to Jing et al. (2014), naturally, BPH usually comes to young rice fields, and insects usually 184 

come in the first two weeks after planting. Thus, the brown planthopper in rice cultivation might be the first generation of 185 

planthoppers that have not yet reproduced because one BPH life cycle takes between 3-4 weeks (IRRI 2009). 186 

BPH observations in Denpasar, Tabanan, Karangasem, and Klungkung cities were dominated by macroptera 187 

imago (Table 2). According to Horgan et al. (2017), the planthopper that first came to the plantation was the macroptera 188 



 

planthopper as a winged immigrant planthopper. Meanwhile, in Badung, Gianyar, Buleleng, Bangli, and Jembrana 189 

regencies, nymphal BPH was dominated by BPH, and several individuals were in the imago phase of brachiptera and 190 

macroptera. The dominance of the nymph phase caused the population of BPH in Badung, Gianyar, Buleleng, Bangli, and 191 

Jembrana districts to be the highest when compared to the cities of Denpasar, Tabanan, Karangasem, and Klungkung. The 192 

presence of the brachiptera planthopper might be contributed to the increase in the nymph population (Baehaki and Mejaya 193 

2015). According to Horgan et al. (2015), rapid population growth usually occurs in groups with many young individuals. 194 

The average intensity of BPH attack on Ciherang and IR-64 varieties of rice was higher than in other varieties. In 195 

the Ciherang and IR-64 varieties of rice, the average value of the highest attack intensity was 30% (Figure 2). It is because 196 

farmers grow rice varieties Ciherang and IR-64 from year to year without any replacement of other varieties. Furthermore, 197 

rice varieties Ciherang and IR-64 became very susceptible to BPH attacks. In addition, BPH is a pest that begins to attack 198 

rice plants from a young age, even when the rice is still in the nursery. 199 

According to Sawada et al. (1993), fluctuations in BPH pest attacks are more influenced by the growth phase of 200 

the rice plant that is the host in the field. BPH pests are often found when rice plants are in the vegetative and generative 201 

stages (Bottrell and Schoenly 2012). Horgan et al. (2017) added that BPH pests could damage rice plants at all stages of 202 

growth and act as vectors for grass and dwarf viruses. BPH attack was higher when rice was in the vegetative phase than in 203 

the generative phase (Horgan et al. 2015). It happens because the pests attack the young rice stalks. Considering the type 204 

of mouth of BPH, which is included in the suction, BPH can suck the liquid from the rice stems and cause the plant leaves 205 

to turn yellow (Anant et al. 2021). According to Choi et al. (2019), during the vegetative phase, food availability in the 206 

form of nitrogen is abundant in rice plants. Rice plants need nitrogen to form plant organs. Food is one of the factors that 207 

affect the life of insects. Qiu et al. (2004) continued that the N element absorbed by plants also serves as a source of 208 

nutrition for BPH. If food is available with good quality (suitable for pests), then the insect pest population will increase, 209 

and vice versa (Qiu et al. 2004). 210 

The mtCOI DNA band was only successfully amplified from the total DNA extraction of one imago or nymph 211 

and not more than one BPH imago. The mtCOI fragment that was successfully amplified corresponds to a size of ±710 bp 212 

in all samples from nine districts in Bali, namely Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar 213 

City, Buleleng, and Jembrana (Figure 3). Nucleotide and amino acid sequence analysis showed high homology with N. 214 

lugens sequences in the database at GenBank, 94.2 – 99.7% and 95.8 - 100%, respectively (Table 3). N. lugens sequences 215 

from Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana showed the 216 

highest nucleotide, and amino acid homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y, 217 

respectively. 99.5 -99.74% and 100% (Table 3). The results of the molecular detection of N. lugens using the PCR method 218 

in Bali, Indonesia, are the first reports of the molecular character of N. lugens in Indonesia. 219 

Samples from Indonesia formed a group with N. lugens biotype Y fragment mtCOI from Pakistan, India, South 220 

Korea, and China (Figure 4). This study found N. lugens biotype Y in rice plants for the first time in Indonesia. The 221 

Indonesian sample did not form separate groups according to the proximity of the district locations but formed a polytomy 222 

cladogram (Figure 4). This polytomy cladogram shows that the N. lugens between regencies (Badung, Gianyar, 223 

Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) were observed to have the same 224 

ancestry. These results indicate high locomotion ability with genetic mixing between N. lugens in Bali isolates. Similar 225 

conditions were also demonstrated in N. lugens among Asian isolates using mitochondrial sequences showing genetic 226 

mixing. It can also be correlated with the theory of long-distance migration of N. lugens, which migrates from the tropics 227 

(northern Vietnam) in April-May to temperate regions (China, Korea, and Japan) in June-July as shown based on 228 

meteorological studies (Otuka et al. 2008). The population of N. lugens is a long-distance migratory flight from the tropics 229 

to temperate Asia before modern pesticides are widely used in tropical rice. Due to the infrequent use of insecticides prior 230 

to the 1960s in the tropics, factors other than insecticides may have triggered long-wing movements to form N. lugens 231 

populations (Bottrell and Schoenly 2012). 232 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, and 4 have been found. Chen et al. (2011) reported that the 233 

brown planthopper is a highly adaptive insect because it can form new biotypes. In early 1975 the IR-26 rice variety from 234 

IRRI Philippines was introduced. The IR-26 variety was unique because it contained a Bph1 resistant gene to anticipate 235 

fluctuations in the brown planthopper population. However, in 1976 there was a great population explosion in several rice 236 

production centers due to changes in the brown planthopper population from biotype 1 to biotype 2. As an anticipatory 237 

measure against brown planthopper biotype 2, in 1980, the IR-42 rice variety (containing the bph2 resistant gene) was 238 

introduced from IRRI Philippines. Unfortunately, in 1981 there was another explosion in the brown planthopper 239 

population in Simalungun, North Sumatra, and several other areas due to changes in the brown planthopper population 240 

from biotype 2 to biotype 3. To deal with the brown planthopper biotype 3, rice variety IR-56 was introduced (containing 241 

the gene bph3 resistance) in 1983 and IR-64 (containing the bph1+ resistance gene) in 1986. The introduction process 242 

continues. In 1991, the IR-74 variety (containing the bph3 resistant gene) was introduced. In 2006, the resistance gene IR-243 

64 was broken because the brown planthopper population changed to biotype 4. The stability of the biotype zero brown 244 

planthoppers persisted for 41 years before becoming brown planthopper biotype 1. The change of brown planthopper 245 

biotype 1 to biotype 2 only took 4 years, and the change of biotype 2 brown planthopper to biotype 3 within 5 years. Until 246 

2005, the brown planthopper biotype 3 was still dominated by biotype 3, and in 2006 the biotype 4 brown planthopper 247 

began to develop. The long existence of the biotype 3 brown planthopper was caused by the development of the IR-64 248 



 

(bph1+) variety over a long period. IR-64 is a resistant variety (durable resistance) that can withstand changes in brown 249 

planthoppers to a more virulent biotype. 250 

The continuous cultivation of IR-64 rice varieties by farmers in Bali led to the emergence of a new biotype BPH, 251 

namely Y. Insects of biotype Y originated from biotype 1 by eating YHY15 resistant varieties for more than two years for 252 

33 generations (Jing et al. 2012). Rice varieties YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 253 

This study shows great potential in the population of N. lugens to adapt to previously resistant rice varieties. This 254 

study reported that rice varieties Situbagendit and Inpari 32, previously resistant to BPH, were susceptible to BPH. This 255 

research can provide information to farmers not to continuously plant susceptible varieties, which could cause BPH 256 

epidemics in the field, as well as the emergence of new, more virulent BPH biotypes. Thus a new control strategy based on 257 

a forecasting system can be developed for the regional management of this insect. 258 

 259 

CONCLUTIONS 260 

N. lugens that attacks rice plants in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar 261 

City, Buleleng, and Jembrana) belongs to biotype Y. Symptoms of damage to rice plants are most severe in Badung 262 

Regency. Apart from Ciherang and IR-64 varieties, Situbagendit and Inpari 32 varieties are susceptible to BPH attack.  263 
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TABLES LIST 1 
 2 
Table 1. The damage score of rice plants due to BPH attack 3 

Score Appearance Description 

0  Healthy  No planthopper was found in any rice hill. 

1  Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice 

stalks had not yet overgrown with Dematium and Cladosporium fungi that followed the brown 

planthopper attack. 

3  Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice 

stems are overgrown with Dematium and Cladosporium fungi that follow the brown planthopper 

attack. 

5  Heavily 

damaged  

Rice hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, 

stunted and black-looking tillers, and overgrown with Dematium and Cladosporium fungi. 

7  Partially dead  Some of the stems in the rice hill die, or the rice hill withers due to planthoppers attack. 

9  Hopperburn Rice hills die from hopperburn 

Sumber: Baehaki (2012) 4 
 5 
Table 2.  Population and symptoms of BPH attack on rice plants in Bali 6 
Location Rice varieties Rice plant age (DAP) BPH attack 

percentage (%) 

BPH population 

abundance (individues/rice 

hills) 

Denpasar City Situbagendit, 

Inpari 32 

35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP= day after planting 7 
 8 
 9 
 10 



 1 
Table 3. Nucleotide (nt) and amino acid (aa) homology of N. lugens in rice from Bali, Indonesia, compared with N. lugens from other countries in GenBank 2 
Isolate Origin of 

isolate 

Biotype Accession 

number 

Homology nt (aa) (%) N. lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng Karangasem Klungkung Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

N. bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide), aa (amino acid), IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South Korea), CHN (China), N. bakeri and Sogatella furcifera from China was used as outgroups 3 

 4 

 5 

 6 



FIGURES LIST 7 

 8 
Figure 1. Symptoms of BPH attack on rice plants in Bali: A. rice plant growth is stunted; B. uneven plant growth (spots); C. yellow 9 
plant; D. dwarf rice plants; E. plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks. 10 

 11 

Figure 2. The attack intensity of N. lugens on rice in Bali Province 12 

 13 

 14 



 

 15 
Figure 3. DNA amplification of N. lugens in rice plants in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City, 2. Bagung, 3. 16 
Gianyar, 4. Tabanan, 5. Buleleng, 6. Karangasemt, 7. Klungkung, 8. Bangli, 9. Jembrana, and M. DNA marker 1 kb (Thermo Scientific) 17 

 18 

Figure 4. The cladogram of the mtCOI fragment of N. lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, Bangli, 19 
Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of the world 20 
that had been deposited on the NCBI website. N. bakeri and Sogatella furcifera from China were used as outgroups. The numbers on the 21 
branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South 22 
Korea), and CHN (China), isolates marked with black dots are Bali isolates. 23 
 24 
 25 
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The brown planthopper (Nilaparvata lugens Stal.) attack and its genetic 1 

diversity on rice in Bali, Indonesia 2 

 ♥             3 

  4 
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     6 
   7 

 8 
Abstract. The brown planthopper (Nilaparvata lugens Stal.)  is an important pest on rice crops in Indonesia. The genetic diversity of 9 
BPH isolates in western Indonesia has been extensively reported, whereas eastern Indonesia isolates have not been reported. This 10 
research aims to analyze genetic diversity and evaluate the BPH attack's intensity on Bali rice plants. The research method used was an 11 
observation of attack percentage, population dynamics, attack intensity, and genetic diversity of BPH in 9 districts in Bali (Badung, 12 
Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana). Molecular identification was carried out 13 
on N. lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in the districts of Gianyar, Bangli, Jembrana, and Badung. 14 
The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 43.67 BPH per rice hill. 15 
In general, rice varieties grown in all observation locations were susceptible to BPH, such as Ciherang, IR-64, Inpari 32, and 16 
Situbagendit. In the Ciherang and IR-64 varieties, the highest attack intensity average value reached 30%. The sequence of N. lugens 17 
isolate from Bali Jembrana showed the highest nucleotide and amino acid homology with N. lugens isolate FSD-034 from Pakistan 18 
(MK301229) biotype Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens biotype Y in rice plants for the first time in 19 
Indonesia. This study reported that Rice varieties Situbagendit and Inpari 32, previously resistant to BPH, are reported as susceptible to 20 
BPH. 21 

Keywords: attack intensity, genetic diversity, Inpari 32, Situbagendit, susceptible variety  22 

Running title: The Brown Planthopper Attack and Its Genetic Diversity  23 

INTRODUCTION  24 

The brown planthopper (BPH) (Nilaparvata lugens Stal, Hemiptera: Delphacidae) is the most destructive rice pest in 25 

Indonesia. Repeated outbreaks of BPH in Indonesia are caused by continuous rice cultivation, extensive use, and over-26 

application of insecticides (Baehaki 2012). This pest is vascular monophagous in rice (Cheng et al. 2013; Ferrater et al. 27 

2013; Triwidodo 2020). Feeding by nymphs and imago at the base of the plant causes rapid wilting and drying of the plant 28 

(Bottrell and Schoenly 2012; Cheng et al. 2013; Bao and Zhang 2019). In addition, BPH is also a vector of Rice grassy 29 

stunt virus and Rice ragged stunt virus (Bao and Zhang 2019). At high population levels of N. lugens can cause significant 30 

losses in rice production (Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 2019).  31 

The BPH cannot tolerate winter in northern Asia, including Japan, Korea, and northern China (He et al. 2012; Fu et al. 32 

2012; Fu et al. 2014). The population originally came from subtropical and tropical areas by flying long distances during 33 

the summer (Fu et al. 2014; Hu et al. 2014). BPH infestation in temperate climates originated from annual migrations from 34 

tropical Asia and China (He et al. 2012). During autumn, BPH re-migrates (north-to-south) and BPH populations have 35 

been studied in China and India (Bottrell and Schoenly 2012). Such return migration may help explain how long-distance 36 

migration is maintained in the winter.  37 

The intensification of rice production triggered the BPH outbreak in Tropical Asia during the green revolution era in 38 

the 1970s and 1980s (Bottrell and Schoenly 2012). Until now, N. lugens is the main problem causing rice harvest failure in 39 

several countries. Inaccurate identification and prolonged identification of N. lugens are obstacles to its field management 40 

strategy.  41 

Traditionally, BPH has been identified at the species level by morphological features using anatomical characteristics, 42 

namely, wings, front, and external genitalia (Lv et al. 2015). Accurate identification requires extensive expertise and 43 

experience and yet sometimes can lead to errors. Morphological identification by an entomologist can reduce the potential 44 

for errors. Practical morphological identification is only possible when dealing with small sample sizes and well-preserved 45 

specimens. Therefore, it is crucial to utilize a new identification method that is accurate, fast, time-saving, and suitable for 46 

large numbers of specimens. 47 

Molecular techniques with high reproducibility and fast results offer an excellent alternative to traditional 48 

morphological classification. Several mitochondrial and nuclear genes have been used as genetic markers to differentiate 49 

related species. These include the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, nuclear 12S-16S-18S 50 

ribosomal RNA genes, and ITS1 and ITS2 internal transcription spacers (Brengues et al. 2014; Gomez-Polo et al. 2014; 51 

Yu et al. 2014; Wang et al. 2016; Zheng et al. 2021). ITS1 and ITS2 are nonfunctional spacers that separate the 18S-5.8S 52 



 

and 5.8S-28S rRNA genes, respectively (Wang et al. 2016; Zheng et al. 2021). As ITS sequences have low intra-species 53 

variation but high variation between species, they are helpful for species classification and phylogenetic analysis for 54 

morphologically similar organisms, both in prokaryotes and eukaryotes (Zheng et al. 2021). Finally, from the molecular 55 

identification of the combined mitochondrial COI-COII and ten microsatellite marker loci (Winnie et al. 2020). 56 

The genetic diversity of N. lugens has been reported in several countries such as China, South Korea, Pakistan, India, 57 

and Malaysia (Jing et al. 2012; Latif et al. 2012; Anant et al. 2021; Zheng et al. 2021). The genetic diversity of N. lugens in 58 

Indonesia is widely reported in western Indonesia (Java Island) (Winnie et al. 2020; Chaerani et al. 2021). Reports on the 59 

genetic diversity of N. lugens in eastern Indonesia have not been found. Therefore, this study aims to analyze genetic 60 

diversity and determine the intensity of BPH attacks on rice plants in eastern Indonesia, especially Bali. 61 

MATERIALS AND METHODS  62 

Brown Planthopper Sampling from Rice Dwarf Disease Endemic Areas 63 

Samples were taken from nine locations at the rice cultivation center in Bali Province (Badung, Gianyar, Klungkung, 64 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana). The brown planthopper samples taken from rice 65 

plants were nymphs and imagos. Nymphs and imagos were used for total DNA extraction. After arriving at the laboratory, 66 

the nymphs and imago were stored dry at -20oC.  67 

 68 

Observation of BPH Attack Symptoms and Quantity of BPH Population/rice hill  69 

Observation of symptoms of BPH attack was carried out by observing symptoms of damage to rice plants due to BPH 70 

attack. The abundance of the BPH/rice hill population was obtained by counting all nymphs and imagoes obtained. Data 71 

on the population per cluster from 20 samples or 20 rice hills at each observation fields were then averaged. For each 72 

location, 3 fields of rice cultivation center were taken which were used for observation 73 

 74 

BPH Attack Percentage 75 

The percentage of BPH attacks is calculated using the following formula: 76 

 77 
Note:  78 

P = Attack percentage (%)  79 

a = Number of rice hills affected by BPH  80 

b = Number of rice hills observed 81 

 82 

Damage Intensity 83 

Determination of scoring on symptoms of rice damage due to BPH attack is based on Table 1. The intensity of damage 84 

due to a BPH attack is determined using the formula (Erdiansyah and Damanhuri 2018): 85 

 86 
 87 

Note:  88 

I = Damage intensity  89 

Ni = The number of affected rice hills on the score i  90 

Vi = Score i  91 

N = The number of rice hills observed 92 

Z = Highest score  93 

 94 

Total DNA Extraction from Brown Planthopper 95 

Total DNA extraction of brown planthopper was obtained from one individual imago or one individual nymph based 96 

on the modified method of Goodwin et al. (1994). One individual imago was put into a microtube and then added to 100 μl 97 

of CTAB (Cethyl Trimethyl Ammonium Bromida) extraction buffer (2% CTAB, 1.4 M NaCl, 100 mM Tris-HCI, 20 mM 98 

EDTA (Ethylenediaminetetraacetic acid), and 1% PVP (-40 °C)). Next, 1 μl of proteinase K was added, then the insects 99 

were crushed using a micro-pistil, vortexed, and incubated in a water bath of 65°C for 3 minutes. After that, the tube was 100 

added with 100 μl CI (chloroform: isoamyl alcohol) in a ratio of 24:1. The tube was then vortexed for 3 minutes and 101 

centrifuged at 10,000 rpm for 15 minutes. The supernatant formed was transferred to a new microtube (60 μl) and then 102 

added with 3 M NaOAc (pH 5.2), as much as 1/10 of the total volume of the supernatant. Isopropanol was added up to 2/3 103 

of the total volume of the supernatant, then incubated at -20°C for one night. The tube was centrifuged at 10,000 rpm for 104 

10 min, and the supernatant was discarded. The pellets were washed with 100 μl of 80% ethanol (cold) and centrifuged at 105 



 

8000 rpm for 5 minutes. In the final step, the supernatant was removed, and the pellet was dried for approximately 1 hour. 106 

It was then added to a solution of 20 μl TE and stored at -20°C until used. 107 

 108 

Amplification of mtCOI Fragments Using the PCR Method  109 

PCR reactants were manufactured with a total volume of 25 μl consisting of 12.5 μl Go Tag Green Master Mix 110 

(Promega, US) and 9.5 μl ddH2O. DNA amplification of the mtCOI fragment was carried out using a pair of universal 111 

primers mtCOI LCO 1490 (3'-GGTCAACAAATCATAAAGATATTGG-5') and HCO 2198 (5'TAAACTTCA 112 

GGGTGACCA AAAAATCA-3') (Folmer et al. 1994) each 1 μl, and 1 μl DNA template. PCR reactions were carried out 113 

with a Perkin Elmer 480 Thermocycler (Applied Biosystem, US). The PCR reaction was initiated by initial denaturation 114 

for 5 min at 94°C. The PCR was continued for 35 cycles in the following order: 94°C for 1 minute, 52°C for 35 seconds, 115 

72°C for 1 minute 30 seconds, and a final extension of 72°C for 7 minutes. The PCR results were then analyzed in 1% 116 

agarose gel. The DNA fragments of mtCOI were visualized using a UV transilluminator after being immersed in a 2% 117 

ethidium bromide solution for 15 minutes and photographed with a digital camera. The result of amplification by PCR 118 

technique was in the form of mtCOI DNA fragments with a size of ± 710 base pairs (pb). 119 

 120 

Analysis of DNA Sequence Results 121 

Nucleotide Sequencing DNA fragment purification and mtCOI nucleotide sequencing were performed at PT. 1st Base, 122 

Malaysia. The results were then registered in the NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis of mtCOI 123 

DNA sequence data ChromasPro program was used to combine forward and reverse nucleotide sequences to obtain the 124 

mtCOI gene (ChromasPro version 2.01. 2006). The Bioedit program was used to compare mtCOI fragments between 125 

samples (Multiple alignments). The phylogenetic relationship was built by comparing the mtCOI sample fragments from 126 

the brown planthopper from Indonesia with the mtCOI fragments already stored in the NCBI GenBank 127 

(http://www.ncbi.nlm.nih.gov). The criteria for retrieving mtCOI fragments at GenBank were fragments with a nucleotide 128 

base length of ± 710 bp (Boykin et al. 2007) (Table 3; Figure 3). The phylogenetic tree was constructed using the PAUP 129 

4.0b10 program with the maximum parsimony cladistic quantitative method. The cladogram was compiled using the 130 

Heuristic method. The cladogram used results from the strick consensus with the statistical bootstrap test to obtain a 100% 131 

probability. 132 

RESULTS AND DISCUSSION 133 

The brown planthopper causes direct and indirect damage to rice plants. Direct damage was in the form of stunted and 134 

uneven growth of rice plants (Figure 1A and 1B), yellow plants (Figure 1C), and hopperburn caused by fluid in rice plant 135 

cells sucked by BPH nymphs, brachiptera (Fig. short wings), and macroptera (long wings) (Figures 1E and 1F). Indirect 136 

damage was caused by BPH, which acts as a vector of Rice grassy stunt virus and Rice ragged stunt virus, causing stunted 137 

rice plants (Figure 1D). Besides Bali or other parts of Indonesia, BPH attacks on rice crops were also reported in China, 138 

where hopperburn affected 60% of all examined crops (Hu et al. 2014). Transmission of the stunt virus by the brown 139 

planthoppers occurs persistently (Horgan et al. 2015). Virus infection causes damage to plants because viruses use plant 140 

proteins for replication, resulting in loss of crop production (Listihani et al. 2020; Damayanti et al. 2022; Listihani et al. 141 

2022; Pandawani et al. 2022; Selangga and Listihani 2022; Selangga et al. 2022). Therefore, infection with RGSV and 142 

RRSV in rice plants causes rice to lack nutrients to the point of stunting. 143 

A percentage of BPH attacks of more than 50% was found in Gianyar, Bangli, Jembrana, and Badung Regencies 144 

(Table 2). The BPH population was primarily found in Ciherang and IR-64 varieties of rice in the Badung Regency, with 145 

43.67 BPH per rice hill (Table 2). Baehaki (2012) added that the economic threshold could be measured through the 146 

number or population of pests and planting age. BPH is said to have reached the economic threshold when the population 147 

of this pest was found in the field, as many as nine BPH per rice hill when the rice age was less than 40 DAP or 18 BPH 148 

when the rice was more than 40 DAP (Baehaki 2012). In general, rice varieties grown in all observation locations in Bali 149 

were BPH susceptible varieties, such as Ciherang, IR-64, Inpari 32, and Situbagendit. 150 

The dynamics of BPH development in the field can be influenced by several factors, including host plant factors and 151 

natural enemies (Ferrater et al. 2015; Horgan et al. 2015; Kobayashi 2016). The host plant factors that affect the BPH 152 

population are related to the age of the rice plant. When the observations were made, the rice plants were still in the 153 

vegetative phase, aged 4-6 WAP. According to Jing et al. (2014), naturally, BPH usually comes to young rice fields, and 154 

insects usually come in the first two weeks after planting. Thus, the brown planthopper in rice cultivation might be the first 155 

generation of planthoppers that have not yet reproduced because one BPH life cycle takes between 3-4 weeks (IRRI 2009). 156 

BPH observations in Denpasar, Tabanan, Karangasem, and Klungkung cities were dominated by macroptera imago 157 

(Table 2). According to Horgan et al. (2017), the planthopper that first came to the plantation was the macroptera 158 

planthopper as a winged immigrant planthopper. Meanwhile, in Badung, Gianyar, Buleleng, Bangli, and Jembrana 159 

regencies, nymphal BPH was dominated by BPH, and several individuals were in the imago phase of brachiptera and 160 

macroptera. The dominance of the nymph phase caused the population of BPH in Badung, Gianyar, Buleleng, Bangli, and 161 

Jembrana districts to be the highest when compared to the cities of Denpasar, Tabanan, Karangasem, and Klungkung. The 162 



 

presence of the brachiptera planthopper might be contributed to the increase in the nymph population (Baehaki 2012). 163 

Rapid population growth usually occurs in groups with many young individuals (Horgan et al. 2015; Triwidodo and 164 

Listihani 2020). 165 

The average intensity of BPH attack on Ciherang and IR-64 varieties of rice was higher than in other varieties. In the 166 

Ciherang and IR-64 varieties of rice, the average value of the highest attack intensity was 30% (Figure 2). It is because 167 

farmers grow rice varieties Ciherang and IR-64 from year to year without any replacement of other varieties. Furthermore, 168 

rice varieties Ciherang and IR-64 became very susceptible to BPH attacks. In addition, BPH is a pest that begins to attack 169 

rice plants from a young age, even when the rice is still in the nursery. 170 

According to Vu et al. (2014), fluctuations in BPH pest attacks are more influenced by the growth phase of the rice 171 

plant that is the host in the field. BPH pests are often found when rice plants are in the vegetative and generative stages 172 

(Bottrell and Schoenly 2012). Horgan et al. (2017) added that BPH pests could damage rice plants at all stages of growth 173 

and act as vectors for grass and dwarf viruses. BPH attack was higher when rice was in the vegetative phase than in the 174 

generative phase (Horgan et al. 2015). It happens because the pests attack the young rice stalks. Considering the type of 175 

mouth of BPH, which is included in the suction, BPH can suck the liquid from the rice stems and cause the plant leaves to 176 

turn yellow (Anant et al. 2021). According to Choi et al. (2019) and Sutrawati et al. (2021), during the vegetative phase, 177 

food availability in the form of nitrogen is abundant in rice plants. Rice plants need nitrogen to form plant organs. Food is 178 

one of the factors that affect the life of insects. Horgan (2018) continued that the N element absorbed by plants also serves 179 

as a source of nutrition for BPH. If food is available with good quality (suitable for pests), then the insect pest population 180 

will increase, and vice versa (Horgan 2018; Triwidodo and Listihani 2020). 181 

The mtCOI DNA band was successfully amplified from the total DNA extraction of one imago or nymph of BPH. The 182 

mtCOI fragment that was successfully amplified corresponds to a size of ±710 bp in all samples from nine districts in Bali, 183 

namely Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana (Figure 3). 184 

Nucleotide and amino acid sequence analysis showed high homology with N. lugens sequences in the database at 185 

GenBank, 94.2 – 99.7% and 95.8 - 100%, respectively (Table 3). N. lugens sequences from Badung, Gianyar, Klungkung, 186 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana showed the highest nucleotide, and amino acid 187 

homology with N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y, respectively. 99.5 -99.74% and 100% 188 

(Table 3). The results of the molecular detection of N. lugens using the PCR method in Bali, Indonesia, are the first reports 189 

of the molecular character of N. lugens in Indonesia. 190 

Samples from Indonesia formed a group with N. lugens biotype Y fragment mtCOI from Pakistan, India, South Korea, 191 

and China (Figure 4). This study found N. lugens biotype Y in rice plants for the first time in Indonesia. The Indonesian 192 

sample did not form separate groups according to the proximity of the district locations but formed a polytomy cladogram 193 

(Figure 4). This polytomy cladogram shows that the N. lugens between regencies (Badung, Gianyar, Klungkung, Bangli, 194 

Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) were observed to have the same ancestry. These results 195 

indicate high locomotion ability with genetic mixing between N. lugens in Bali isolates. Similar conditions were also 196 

demonstrated in N. lugens among Asian isolates using mitochondrial sequences showing genetic mixing. It can also be 197 

correlated with the theory of long-distance migration of N. lugens, which migrates from the tropics (northern Vietnam) in 198 

April-May to temperate regions (China, Korea, and Japan) in June-July as shown based on meteorological studies (Otuka 199 

et al. 2008). The population of N. lugens is a long-distance migratory flight from the tropics to temperate Asia before 200 

modern pesticides are widely used in tropical rice. Due to the infrequent use of insecticides prior to the 1960s in the 201 

tropics, factors other than insecticides may have triggered long-wing movements to form N. lugens populations (Bottrell 202 

and Schoenly 2012). 203 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, and 4 have been found. Kobayashi et al. (2014) reported that the 204 

brown planthopper is a highly adaptive insect because it can form new biotypes. In early 1975 the IR-26 rice variety from 205 

IRRI Philippines was introduced. The IR-26 variety was unique because it contained a Bph1 resistant gene to anticipate 206 

fluctuations in the brown planthopper population. However, in 1976 there was a great population explosion in several rice 207 

production centers due to changes in the brown planthopper population from biotype 1 to biotype 2. As an anticipatory 208 

measure against brown planthopper biotype 2, in 1980, the IR-42 rice variety (containing the bph2 resistant gene) was 209 

introduced from IRRI Philippines. Unfortunately, in 1981 there was another explosion in the brown planthopper 210 

population in Simalungun, North Sumatra, and several other areas due to changes in the brown planthopper population 211 

from biotype 2 to biotype 3. To deal with the brown planthopper biotype 3, rice variety IR-56 was introduced (containing 212 

the gene bph3 resistance) in 1983 and IR-64 (containing the bph1+ resistance gene) in 1986. The introduction process 213 

continues. In 1991, the IR-74 variety (containing the bph3 resistant gene) was introduced. In 2006, the resistance gene IR-214 

64 was broken because the brown planthopper population changed to biotype 4 (Baehaki 2012). The stability of the 215 

biotype zero brown planthoppers persisted for 41 years before becoming brown planthopper biotype 1. The change of 216 

brown planthopper biotype 1 to biotype 2 only took 4 years, and the change of biotype 2 brown planthopper to biotype 3 217 

within 5 years. Until 2005, the brown planthopper biotype 3 was still dominated by biotype 3, and in 2006 the biotype 4 218 

brown planthopper began to develop. The long existence of the biotype 3 brown planthopper was caused by the 219 

development of the IR-64 (bph1+) variety over a long period. IR-64 is a resistant variety (durable resistance) that can 220 

withstand changes in brown planthoppers to a more virulent biotype. 221 



 

The continuous cultivation of IR-64 rice varieties by farmers in Bali led to the emergence of a new biotype BPH, 222 

namely Y. Insects of biotype Y originated from biotype 1 by eating YHY15 resistant varieties for more than two years for 223 

33 generations (Jing et al. 2012). Rice varieties YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 224 

This study shows great potential in the population of N. lugens to adapt to previously resistant rice varieties. This study 225 

reported that rice varieties Situbagendit and Inpari 32, previously resistant to BPH, were susceptible to BPH. This research 226 

can provide information to farmers not to continuously plant susceptible varieties, which could cause BPH epidemics in 227 

the field, as well as the emergence of new, more virulent BPH biotypes. Thus a new control strategy based on a forecasting 228 

system can be developed for the regional management of this insect. 229 

In conclusion, N. lugens that attacks rice plants in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, 230 

Denpasar City, Buleleng, and Jembrana) belongs to biotype Y. Symptoms of damage to rice plants are most severe in 231 

Badung Regency. Apart from Ciherang and IR-64 varieties, Situbagendit and Inpari 32 varieties are susceptible to BPH 232 

attack.  233 
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TABLES LIST 1 
 2 
Table 1. The damage score of rice plants due to BPH attack 3 

Score Appearance Description 

0  Healthy  No planthopper was found in any rice hill. 

1  Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice 

stalks had not yet overgrown with Colletotrichum dematium and Cladosporium fungi that followed 

the brown planthopper attack. 

3  Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice 

stems are overgrown with Colletotrichum dematium and Cladosporium fungi that follow the brown 

planthopper attack. 

5  Heavily 

damaged  

Rice hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, 

stunted and black-looking tillers, and overgrown with Colletotrichum dematium and Cladosporium 

fungi. 

7  Partially dead  Some of the stems in the rice hill die, or the rice hill withers due to planthoppers attack. 

9  Hopperburn Rice hills die from hopperburn 

Sumber: Baehaki (2012) 4 
 5 
Table 2. Population and symptoms of BPH attack on rice plants in Bali 6 
Location Rice varieties Rice plant age (DAP) BPH attack 

percentage (%) 

BPH population 

abundance (individues/rice 

hills) 

Denpasar City Situbagendit, 

Inpari 32 

35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP= day after planting 7 
 8 
 9 
 10 



 1 
Table 3. Nucleotide (nt) and amino acid (aa) homology of N. lugens in rice from Bali, Indonesia, compared with N. lugens from other countries in GenBank 2 
Isolate Origin of 

isolate 

Biotype Accession 

number 

Homology nt (aa) (%) N. lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng Karangasem Klungkung Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

N. bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide), aa (amino acid), IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South Korea), CHN (China), N. bakeri and Sogatella furcifera from China was used as outgroups 3 

 4 

 5 

 6 



FIGURES LIST 7 

 8 
Figure 1. Symptoms of BPH attack on rice plants in Bali: A. rice plant growth is stunted; B. uneven plant growth (spots); C. yellow 9 
plant; D. dwarf rice plants; E. plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks. 10 
 11 

 12 
Figure 2. The attack intensity of N. lugens on rice in Bali Province 13 



 

 14 

 15 
Figure 3. DNA amplification of N. lugens in rice plants in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City, 2. Bagung, 3. 16 
Gianyar, 4. Tabanan, 5. Buleleng, 6. Karangasemt, 7. Klungkung, 8. Bangli, 9. Jembrana, and M. DNA marker 1 kb (Thermo Scientific) 17 

 18 

Figure 4. The cladogram of the mtCOI fragment of N. lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, Bangli, 19 
Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of the world 20 
that had been deposited on the NCBI website. N. bakeri and Sogatella furcifera from China were used as outgroups. The numbers on the 21 
branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South 22 
Korea), and CHN (China), isolates marked with black dots are Bali isolates. 23 
 24 
 25 
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Abstract. Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022. The brown planthopper (Nilaparvata lugens) attack and its 

genetic diversity on rice in Bali, Indonesia. Biodiversitas 23: 4696-4704. The brown planthopper (Nilaparvata lugens) is an important 

pest on rice crops in Indonesia. The genetic diversity of BPH isolates in western Indonesia has been extensively reported, whereas 

eastern Indonesia isolates have not been reported. This research aims to analyze genetic diversity and evaluate the BPH attack's intensity 

on Bali rice plants. The research method used was an observation of attack percentage, population dynamics, attack intensity, and 

genetic diversity of BPH in 9 districts in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, 

and Jembrana). Molecular identification was carried out on N. lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in 

the districts of Gianyar, Bangli, Jembrana, and Badung. The BPH population was primarily found in Ciherang and IR-64 varieties of 

rice in the Badung Regency, with 43.67 BPH per rice hill. In general, rice varieties grown in all observation locations were susceptible 

to BPH, such as Ciherang, IR-64, Inpari 32, and Situbagendit. In the Ciherang and IR-64 varieties, the highest attack intensity average 

value reached 30%. The sequence of N. lugens isolate from Bali Jembrana showed the highest nucleotide and amino acid homology with 

N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens 

biotype Y in rice plants for the first time in Indonesia. This study reported that Rice varieties Situbagendit and Inpari 32, previously 

resistant to BPH, are reported as susceptible to BPH. 

Keywords: Attack intensity, genetic diversity, Inpari 32, Situbagendit, susceptible variety 

INTRODUCTION 

The brown planthopper (BPH) (Nilaparvata lugens, 

Hemiptera: Delphacidae) is the most destructive rice pest in 

Indonesia. Repeated outbreaks of BPH in Indonesia are 

caused by continuous rice cultivation, extensive use, and 

over-application of insecticides (Baehaki 2012). This pest 

is vascular monophagous in rice (Cheng et al. 2013; 

Ferrater et al. 2013; Triwidodo 2020). Feeding by nymphs 

and imago at the base of the plant causes rapid wilting and 

drying of the plant (Bottrell and Schoenly 2012; Cheng et 

al. 2013; Bao and Zhang 2019). In addition, BPH is also a 

vector of Rice grassy stunt virus and Rice ragged stunt 

virus (Bao and Zhang 2019). High population levels of N. 

lugens can cause significant losses in rice production 

(Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 

2019).  

The BPH cannot tolerate winter in northern Asia, 

including Japan, Korea, and northern China (Fu et al. 2012; 

He et al. 2012; Fu et al. 2014). The population originally 

came from subtropical and tropical areas by flying long 

distances during the summer (Fu et al. 2014; Hu et al. 

2014). BPH infestation in temperate climates originated 

from annual migrations from tropical Asia and China (He 

et al. 2012). During autumn, BPH re-migrates (north-to-

south) and BPH populations have been studied in China 

and India (Bottrell and Schoenly 2012). Such return 

migration may help explain how long-distance migration is 

maintained in the winter.  

The intensification of rice production triggered the BPH 

outbreak in Tropical Asia during the green revolution era in 

the 1970s and 1980s (Bottrell and Schoenly 2012). Until 

now, N. lugens is the main problem causing rice harvest 

failure in several countries. Inaccurate identification and 

prolonged identification of N. lugens are obstacles to its 

field management strategy.  

Traditionally, BPH has been identified at the species 

level by morphological features using anatomical 

characteristics, namely, wings, front, and external genitalia 

(Lv et al. 2015). Accurate identification requires extensive 

expertise and experience and yet sometimes can lead to 

errors. Morphological identification by an entomologist can 

reduce the potential for errors. Practical morphological 

identification is only possible when dealing with small 

sample sizes and well-preserved specimens. Therefore, it is 

crucial to utilize a new identification method that is 

accurate, fast, time-saving, and suitable for large numbers 

of specimens. 

Molecular techniques with high reproducibility and fast 

results offer an excellent alternative to traditional 

morphological classification. Several mitochondrial and 

nuclear genes have been used as genetic markers to 

differentiate related species. These include the 

mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, 
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nuclear 12S-16S-18S ribosomal RNA genes, and ITS1 and 

ITS2 internal transcription spacers (Brengues et al. 2014; 

Gomez-Polo et al. 2014; Yu et al. 2014; Wang et al. 2016; 

Zheng et al. 2021). ITS1 and ITS2 are nonfunctional 

spacers that separate the 18S-5.8S and 5.8S-28S rRNA 

genes, respectively (Wang et al. 2016; Zheng et al. 2021). 

As ITS sequences have low intra-species variation but high 

variation between species, they are helpful for species 

classification and phylogenetic analysis for morphologically 

similar organisms, both in prokaryotes and eukaryotes (Zheng 

et al. 2021). Finally, from the molecular identification of the 

combined mitochondrial COI-COII and ten microsatellite 

marker loci (Winnie et al. 2020). 

The genetic diversity of N. lugens has been reported in 

several countries, such as China, South Korea, Pakistan, 

India, and Malaysia (Jing et al. 2012; Latif et al. 2012; 

Anant et al. 2021; Zheng et al. 2021). The genetic diversity 

of N. lugens in Indonesia is widely reported in western 

Indonesia (Java Island) (Winnie et al. 2020; Chaerani et al. 

2021). Reports on the genetic diversity of N. lugens in 

eastern Indonesia have not been found. Therefore, this 

study aims to analyze genetic diversity and determine the 

intensity of BPH attacks on rice plants in eastern Indonesia, 

especially Bali. 

MATERIALS AND METHODS 

Brown planthopper sampling from rice dwarf disease 

endemic areas 

Samples were taken from nine locations at the rice 

cultivation center in Bali Province (Badung, Gianyar, 

Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, 

Buleleng, and Jembrana). The brown planthopper samples 

taken from rice plants were nymphs and imagos. Nymphs 

and imagos were used for total DNA extraction. After 

arriving at the laboratory, the nymphs and imago were 

stored dry at -20oC.  

Observation of BPH attack symptoms and quantity of 

BPH population/rice hills  

Observation of symptoms of BPH attack was carried 

out by observing symptoms of damage to rice plants due to 

BPH attack. The abundance of the BPH/rice hills 

population was obtained by counting all nymphs and 

imagoes obtained. Data on the population per cluster from 

20 samples or 20 rice hills at each observation fields were 

then averaged. For each location, 3 fields of rice cultivation 

center were taken, which were used for observation. 

BPH attack percentage 

The percentage of BPH attacks is calculated using the 

following formula: 

 

 
 

Where:  

P  : Attack percentage (%)  

a  : Number of rice hills affected by BPH  

b  : Number of rice hills observed 

Damage intensity 

Determination of scoring on symptoms of rice damage 

due to BPH attack is based on Table 1. The intensity of 

damage due to a BPH attack is determined using the 

formula (Erdiansyah and Damanhuri 2018): 
 

 
 

Where:  

I  : Damage intensity  

Ni  : The number of affected rice hills on the score i  

Vi  : Score i  

N  : The number of rice hills observed 

Z  : Highest score 

Total DNA extraction from brown planthopper 

Total DNA extraction of brown planthopper was 

obtained from one individual imago or one individual 

nymph based on the modified method of Goodwin et al. 

(1994). One individual imago was put into a microtube and 

then added to 100 μL of CTAB (Cethyl Trimethyl 

Ammonium Bromida) extraction buffer (2% CTAB, 1.4 M 

NaCl, 100 mM Tris-HCI, 20 mM EDTA 

(Ethylenediaminetetraacetic acid), and 1% PVP (-40°C). 

Next, 1 μL of proteinase K was added, then the insects 

were crushed using a micro-pistil, vortexed, and incubated 

in a water bath of 65°C for 3 minutes.  

 

 
Table 1. The damage score of rice plants due to BPH attack (Baehaki 2012) 

 

Score Appearance Description 

0 Healthy  No planthopper was found in any rice hill 

1 Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice stalks had 

not yet overgrown with Colletotrichum dematium and Cladosporium fungi that followed the brown 

planthopper attack 

3 Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice stems are 

overgrown with Colletotrichum dematium and Cladosporium fungi that follow the brown planthopper attack 

5 Heavily 

damaged  

Rice hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, stunted 

and black-looking tillers, and overgrown with Colletotrichum dematium and Cladosporium fungi 

7 Partially dead  Some of the stems in the rice hill die, or the rice hill withers due to planthoppers attack 

9 Hopperburn Rice hills die from hopperburn 
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After that, the tube was added with 100 μL CI 

(chloroform: isoamyl alcohol) in a ratio of 24:1. The tube 

was then vortexed for 3 minutes and centrifuged at 10,000 

rpm for 15 minutes. The supernatant formed was 

transferred to a new microtube (60 μL) and then added with 

3 M NaOAc (pH 5.2), as much as 1/10 of the total volume 

of the supernatant. Isopropanol was added up to 2/3 of the 

total volume of the supernatant, then incubated at -20°C for 

one night. The tube was centrifuged at 10,000 rpm for 10 

min, and the supernatant was discarded. The pellets were 

washed with 100 μL of 80% ethanol (cold) and centrifuged 

at 8000 rpm for 5 minutes. In the final step, the supernatant 

was removed, and the pellet was dried for approximately 1 

hour. It was then added to a solution of 20 μL TE and 

stored at -20°C until used. 

Amplification of mtCOI fragments using the PCR 

method  

PCR reactants were manufactured with a total volume 

of 25 μL consisting of 12.5 μL Go Tag Green Master Mix 

(Promega, US) and 9.5 μL ddH2O. DNA amplification of 

the mtCOI fragment was carried out using a pair of 

universal primers mtCOI LCO 1490 (3'-

GGTCAACAAATCATAAAGATATTGG-5') and HCO 

2198 (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') 

(Folmer et al. 1994) each 1 μL, and 1 μL DNA template. 

PCR reactions were carried out with a Perkin Elmer 480 

Thermocycler (Applied Biosystem, US). The PCR reaction 

was initiated by initial denaturation for 5 min at 94°C. The 

PCR was continued for 35 cycles in the following order: 

94°C for 1 minute, 52°C for 35 seconds, 72°C for 1 minute 

30 seconds, and a final extension of 72°C for 7 minutes. 

The PCR results were then analyzed in 1% agarose gel. 

The DNA fragments of mtCOI were visualized using a UV 

transilluminator after being immersed in a 2% ethidium 

bromide solution for 15 minutes and photographed with a 

digital camera. The result of amplification by PCR 

technique was in the form of mtCOI DNA fragments with a 

size of ±710 base pairs (bp). 

Analysis of DNA sequence results 

Nucleotide sequencing DNA fragment purification and 

mtCOI nucleotide sequencing were performed at PT. 1st 

Base, Malaysia. The results were then registered in the 

NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis 

of mtCOI DNA sequence data ChromasPro program was 

used to combine forward and reverse nucleotide sequences 

to obtain the mtCOI gene (ChromasPro version 2.01. 

2006). The Bioedit program was used to compare mtCOI 

fragments between samples (Multiple alignments). The 

phylogenetic relationship was built by comparing the 

mtCOI sample fragments from the brown planthopper from 

Indonesia with the mtCOI fragments already stored in the 

NCBI GenBank (http://www.ncbi.nlm.nih.gov). The 

criteria for retrieving mtCOI fragments at GenBank were 

fragments with a nucleotide base length of ±710 bp 

(Boykin et al. 2007) (Table 3, Figure 3). The phylogenetic 

tree was constructed using the PAUP 4.0b10 program with 

the maximum parsimony cladistic quantitative method. The 

cladogram was compiled using the Heuristic method. The 

cladogram used results from the strict consensus with the 

statistical bootstrap test to obtain a 100% probability. 

RESULTS AND DISCUSSION 

The brown planthopper causes direct and indirect 

damage to rice plants. Direct damage was in the form of 

stunted and uneven growth of rice plants (Figure 1A and 

1B), yellow plants (Figure 1C), and hopperburn caused by 

fluid in rice plant cells sucked by BPH nymphs, 

brachyptera (short wings), and macroptera (long wings) 

(Figures 1E and 1F). Indirect damage was caused by BPH, 

which acts as a vector of Rice grassy stunt virus and Rice 

ragged stunt virus, causing stunted rice plants (Figure 1D). 

Besides Bali or other parts of Indonesia, BPH attacks on 

rice crops were also reported in China, where hopperburn 

affected 60% of all examined crops (Hu et al. 2014). 

Transmission of the stunt virus by the brown planthoppers 

occurs persistently (Horgan et al. 2015). Virus infection 

causes damage to plants because viruses use plant proteins 

for replication, resulting in loss of crop production 

(Listihani et al. 2020; Damayanti et al. 2022; Listihani et 

al. 2022; Pandawani et al. 2022; Selangga and Listihani 

2022; Selangga et al. 2022). Therefore, infection with 

RGSV and RRSV in rice plants causes the rice to lack 

nutrients to the point of stunting. 

A percentage of BPH attacks of more than 50% was 

found in Gianyar, Bangli, Jembrana, and Badung 

Regencies (Table 2). The BPH population was primarily 

found in Ciherang and IR-64 varieties of rice in the Badung 

Regency, with 43.67 BPH per rice hill. Baehaki (2012) 

added that the economic threshold could be measured 

through the number or population of pests and planting age. 

BPH is said to have reached the economic threshold when 

the population of this pest was found in the field, as many 

as nine BPH per rice hill when the rice age was less than 40 

DAP or 18 BPH when the rice was more than 40 DAP 

(Baehaki 2012). In general, rice varieties grown in all 

observation locations in Bali were BPH susceptible 

varieties, such as Ciherang, IR-64, Inpari 32, and 

Situbagendit. 

The dynamics of BPH development in the field can be 

influenced by several factors, including host plant factors 

and natural enemies (Ferrater et al. 2015; Horgan et al. 

2015; Kobayashi 2016). The host plant factors that affect 

the BPH population are related to the age of the rice plant. 

When the observations were made, the rice plants were still 

in the vegetative phase, aged 4-6 WAP. According to Jing 

et al. (2014), naturally, BPH usually comes to young rice 

fields, and insects usually come in the first two weeks after 

planting. Thus, the brown planthopper in rice cultivation 

might be the first generation of planthoppers that have not 

yet reproduced because one BPH life cycle takes between 

3-4 weeks (IRRI 2009). 
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Figure 1. Symptoms of BPH attack on rice plants in Bali. A. Rice plant growth is stunted; B. Uneven plant growth (spots); C. Yellow 

plant; D. Dwarf rice plants; E. Plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks 

 

 
Table 2. Population and symptoms of BPH attack on rice plants in Bali, Indonesia 

 

Location Rice varieties Rice plant age (DAP) 
BPH attack 

percentage (%) 

BPH population abundance 

(individues/rice hills) 

Denpasar City Situbagendit, Inpari 32 35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP: day after planting 

 

 

BPH observations in Denpasar, Tabanan, Karangasem, 

and Klungkung districts were dominated by macroptera 

imago (Table 2). According to Horgan et al. (2017), the 

planthopper that first came to the plantation was the 

macroptera planthopper as a winged immigrant 

planthopper. Meanwhile, in Badung, Gianyar, Buleleng, 

Bangli, and Jembrana districts, nymphs BPH was 

dominated by BPH, and several individuals were in the 

imago phase of brachyptera and macroptera. The 

dominance of the nymph phase caused the population of 

BPH in Badung, Gianyar, Buleleng, Bangli, and Jembrana 

districts to be the highest when compared to the districts of 

Denpasar, Tabanan, Karangasem, and Klungkung. The 

presence of the brachyptera planthopper might be 

contributed to the increase in the nymph population 

(Baehaki 2012). Rapid population growth usually occurs in 

groups with many young individuals (Horgan et al. 2015; 

Triwidodo and Listihani 2020). 
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The average intensity of BPH attack on Ciherang and 

IR-64 varieties of rice was higher than in other varieties. In 

the Ciherang and IR-64 varieties of rice, the average value 

of the highest attack intensity was 30% (Figure 2). It is 

because farmers grow rice varieties Ciherang and IR-64 

from year to year without any replacement of other 

varieties. Furthermore, rice varieties Ciherang and IR-64 

became very susceptible to BPH attacks. In addition, BPH 

is a pest that begins to attack rice plants from a young age, 

even when the rice is still in the nursery. 

According to Vu et al. (2014), fluctuations in BPH pest 

attacks are more influenced by the growth phase of the rice 

plant that is the host in the field. BPH pests are often found 

when rice plants are in the vegetative and generative stages 

(Bottrell and Schoenly 2012). Horgan et al. (2017) added 

that BPH pests could damage rice plants at all stages of 

growth and act as vectors for grass and dwarf viruses. BPH 

attack was higher when rice was in the vegetative phase 

than in the generative phase (Horgan et al. 2015). It 

happens because the pests attack the young rice stalks. 

Considering the type of mouth of BPH, which is included 

in the suction, BPH can suck the liquid from the rice stems 

and cause the plant leaves to turn yellow (Anant et al. 

2021). According to Choi et al. (2019) and Sutrawati et al. 

(2021), during the vegetative phase, food availability in the 

form of nitrogen is abundant in rice plants. Rice plants 

need nitrogen to form plant organs. Food is one of the 

factors that affect the life of insects. Horgan (2018) 

continued that the N element absorbed by plants also serves 

as a source of nutrition for BPH. If food is available with 

good quality (suitable for pests), then the insect pest 

population will increase, and vice versa (Horgan 2018; 

Triwidodo and Listihani 2020). 

The mtCOI DNA band was successfully amplified from 

the total DNA extraction of one imago or nymph of BPH. 

The mtCOI fragment that was successfully amplified 

corresponds to a size of ±710 bp in all samples from nine 

districts in Bali, namely Badung, Gianyar, Klungkung, 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, 

and Jembrana (Figure 3). Nucleotide and amino acid 

sequence analysis showed high homology with N. lugens 

sequences in the database at GenBank, 94.2-99.7% and 

95.8-100%, respectively (Table 3). Nilaparvata lugens 

sequences from Badung, Gianyar, Klungkung, Bangli, 

Karangasem, Tabanan, Denpasar City, Buleleng, and 

Jembrana showed the highest nucleotide, and amino acid 

homology with N. lugens isolate FSD-034 from Pakistan 

(MK301229) biotype Y, respectively. 99.5-99.74% and 

100% (Table 3). The results of the molecular detection of 

N. lugens using the PCR method in Bali, Indonesia, are the 

first reports of the molecular character of N. lugens in 

Indonesia. 

Samples from Indonesia formed a group with N. lugens 

biotype Y fragment mtCOI from Pakistan, India, South 

Korea, and China (Figure 4). This study found N. lugens 

biotype Y in rice plants for the first time in Indonesia. The 

Indonesian sample did not form separate groups according 

to the proximity of the district locations but formed a 

polytomy cladogram (Figure 4). This polytomy cladogram 

shows that the N. lugens between regencies (Badung, 

Gianyar, Klungkung, Bangli, Karangasem, Tabanan, 

Denpasar City, Buleleng, and Jembrana) were observed to 

have the same ancestry. These results indicate high 

locomotion ability with genetic mixing between N. lugens 

in Bali isolates. Similar conditions were also demonstrated 

in N. lugens among Asian isolates using mitochondrial 

sequences showing genetic mixing. It can also be 

correlated with the theory of long-distance migration of N. 

lugens, which migrates from the tropics (northern Vietnam) 

in April-May to temperate regions (China, Korea, and 

Japan) in June-July as shown based on meteorological 

studies (Otuka et al. 2008). The population of N. lugens is a 

long-distance migratory flight from the tropics to temperate 

Asia before modern pesticides are widely used in tropical 

rice. Due to the infrequent use of insecticides prior to the 

1960s in the tropics, factors other than insecticides may 

have triggered long-wing movements to form N. lugens 

populations (Bottrell and Schoenly 2012). 

 

 

 
 

Figure 2. The attack intensity of Nilaparvata lugens on rice in 

Bali Province, Indonesia 

 

 

 
 

Figure 3. DNA amplification of Nilaparvata lugens in rice plants 

in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City; 2. 

Bagung; 3. Gianyar; 4. Tabanan; 5. Buleleng; 6. Karangasemt; 7. 

Klungkung; 8. Bangli; 9. Jembrana and M. DNA marker 1 kb 

(Thermo Scientific) 
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Table 3. Nucleotide (nt) and amino acid (aa) homology of Nilaparvata lugens in rice from Bali, Indonesia, compared with Nilaparvata lugens from other countries in GenBank 

 

Isolate 
Origin of 

isolate 
Biotype 

Accession 

number 

Homology nt (aa) (%) Nilaparvata lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng Karangasem Klungkung Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

Nilaparvata bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide); aa (amino acid); IDN (Indonesia); PAK (Pakistan); IND (India); KOR (South Korea); CHN (China); Nilaparvata bakeri and Sogatella furcifera from China was used as 

outgroups 
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Figure 4. The cladogram of the mtCOI fragment of Nilaparvata lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of 

the world that had been deposited on the NCBI website. Nilaparvata bakeri and Sogatella furcifera from China were used as outgroups. 

The numbers on the branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND 

(India), KOR (South Korea), and CHN (China), isolates marked with black dots are Bali isolates 

 

 

 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, 

and 4 have been found. Kobayashi et al. (2014) reported 

that the brown planthopper is a highly adaptive insect 

because it can form new biotypes. In early 1975 the IR-26 

rice variety from IRRI Philippines was introduced. The IR-

26 variety was unique because it contained a Bph1 resistant 

gene to anticipate fluctuations in the brown planthopper 

population. However, in 1976 there was a great population 

explosion in several rice production centers due to changes 

in the brown planthopper population from biotype 1 to 

biotype 2. As an anticipatory measure against brown 

planthopper biotype 2, in 1980, the IR-42 rice variety 

(containing the bph2 resistant gene) was introduced from 

IRRI Philippines. Unfortunately, in 1981 there was another 

explosion in the brown planthopper population in 

Simalungun, North Sumatra, and several other areas due to 

changes in the brown planthopper population from biotype 

2 to biotype 3. To deal with the brown planthopper biotype 

3, rice variety IR-56 was introduced (containing the gene 

bph3 resistance) in 1983 and IR-64 (containing the bph1+ 

resistance gene) in 1986. The introduction process 

continues. In 1991, the IR-74 variety (containing the bph3 

resistant gene) was introduced. In 2006, the resistance gene 

IR-64 was broken because the brown planthopper 

population changed to biotype 4 (Baehaki 2012). The 

stability of the biotype zero brown planthoppers persisted 

for 41 years before becoming brown planthopper biotype 1. 

The change of brown planthopper biotype 1 to biotype 2 

only took 4 years, and the change of biotype 2 brown 

planthopper to biotype 3 within 5 years. Until 2005, the 

brown planthopper biotype 3 was still dominated by 

biotype 3, and in 2006 the biotype 4 brown planthopper 

began to develop. The long existence of the biotype 3 

brown planthopper was caused by the development of the 

IR-64 (bph1+) variety over a long period. IR-64 is a 

resistant variety (durable resistance) that can withstand 

changes in brown planthoppers to a more virulent biotype. 

The continuous cultivation of IR-64 rice varieties by 

farmers in Bali led to the emergence of a new biotype BPH, 

namely Y. Insects of biotype Y originated from biotype 1 

by eating YHY15 resistant varieties for more than two 

years for 33 generations (Jing et al. 2012). Rice varieties 

YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 

This study shows great potential in the population of N. 

lugens to adapt to previously resistant rice varieties. This 

study reported that rice varieties Situbagendit and Inpari 

32, previously resistant to BPH, were susceptible to BPH. 

This research can provide information to farmers not to 

continuously plant susceptible varieties, which could cause 

BPH epidemics in the field, as well as the emergence of 

new, more virulent BPH biotypes. Thus a new control 

strategy based on a forecasting system can be developed 

for the regional management of this insect. 

In conclusion, N. lugens that attack rice plants in Bali 

(Badung, Gianyar, Klungkung, Bangli, Karangasem, 

Tabanan, Denpasar City, Buleleng, and Jembrana) belongs 

to biotype Y. Symptoms of damage to rice plants are most 

severe in Badung Regency. Apart from Ciherang and IR-64 
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varieties, Situbagendit and Inpari 32 varieties are 

susceptible to BPH attack. 
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Abstract. Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022. The brown planthopper (Nilaparvata lugens Stal.) attack and its 

genetic diversity on rice in Bali, Indonesia. Biodiversitas 23: xxxx. The brown planthopper (Nilaparvata lugens Stal.)  is an important 

pest on rice crops in Indonesia.. The genetic diversity of BPH isolates in western Indonesia has been extensively reported, whereas 

eastern Indonesia isolates have not been reported. This research aims to analyze genetic diversity and evaluate the BPH attack's intensity 

on Bali rice plants. The research method used was an observation of attack percentage, population dynamics, attack intensity, and 

genetic diversity of BPH in 9 districts in Bali (Badung, Gianyar, Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, 

and Jembrana). Molecular identification was carried out on N. lugens DNA in the mtCOI fragment. BPH attacks of >50% were found in 

the districts of Gianyar, Bangli, Jembrana, and Badung. The BPH population was primarily found in Ciherang and IR-64 varieties of 

rice in the Badung Regency, with 43.67 BPH per rice hill. In general, rice varieties grown in all observation locations were susceptible 

to BPH, such as Ciherang, IR-64, Inpari 32, and Situbagendit. In the Ciherang and IR-64 varieties, the highest attack intensity average 

value reached 30%. The sequence of N. lugens isolate from Bali Jembrana showed the highest nucleotide and amino acid homology with 

N. lugens isolate FSD-034 from Pakistan (MK301229) biotype Y of 99.5 -99.74% and 100%, respectively. This study found N. lugens 

biotype Y in rice plants for the first time in Indonesia. This study reported that Rice varieties Situbagendit and Inpari 32, previously 

resistant to BPH, are reported as susceptible to BPH. 

Keywords: attack intensity, genetic diversity, Inpari 32, Situbagendit, susceptible variety 

INTRODUCTION 

The brown planthopper (BPH) (Nilaparvata lugens 

Stal, Hemiptera: Delphacidae) is the most destructive rice 

pest in Indonesia. Repeated outbreaks of BPH in Indonesia 

are caused by continuous rice cultivation, extensive use, 

and over-application of insecticides (Baehaki 2012). This 

pest is vascular monophagous in rice (Cheng et al. 2013; 

Ferrater et al. 2013; Triwidodo 2020). Feeding by nymphs 

and imago at the base of the plant causes rapid wilting and 

drying of the plant (Bottrell and Schoenly 2012; Cheng et 

al. 2013; Bao and Zhang 2019). In addition, BPH is also a 

vector of Rice grassy stunt virus and Rice ragged stunt 

virus (Bao and Zhang 2019). At high population levels of 

N. lugens can cause significant losses in rice production 

(Cheng et al. 2013; Zheng et al. 2013; Bao and Zhang 

2019).  

The BPH cannot tolerate winter in northern Asia, 

including Japan, Korea, and northern China (He et al. 2012; 

Fu et al. 2012; Fu et al. 2014). The population originally 

came from subtropical and tropical areas by flying long 

distances during the summer (Fu et al. 2014; Hu et al. 

2014). BPH infestation in temperate climates originated 

from annual migrations from tropical Asia and China (He 

et al. 2012). During autumn, BPH re-migrates (north-to-

south) and BPH populations have been studied in China 

and India (Bottrell and Schoenly 2012). Such return 

migration may help explain how long-distance migration is 

maintained in the winter.  

The intensification of rice production triggered the BPH 

outbreak in Tropical Asia during the green revolution era in 

the 1970s and 1980s (Bottrell and Schoenly 2012). Until 

now, N. lugens is the main problem causing rice harvest 

failure in several countries. Inaccurate identification and 

prolonged identification of N. lugens are obstacles to its 

field management strategy.  

Traditionally, BPH has been identified at the species 

level by morphological features using anatomical 

characteristics, namely, wings, front, and external genitalia 

(Lv et al. 2015). Accurate identification requires extensive 

expertise and experience and yet sometimes can lead to 

errors. Morphological identification by an entomologist can 

reduce the potential for errors. Practical morphological 

identification is only possible when dealing with small 

sample sizes and well-preserved specimens. Therefore, it is 

crucial to utilize a new identification method that is 

accurate, fast, time-saving, and suitable for large numbers 

of specimens. 

Molecular techniques with high reproducibility and fast 

results offer an excellent alternative to traditional 

morphological classification. Several mitochondrial and 

nuclear genes have been used as genetic markers to 
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differentiate related species. These include the 

mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, 

nuclear 12S-16S-18S ribosomal RNA genes, and ITS1 and 

ITS2 internal transcription spacers (Brengues et al. 2014; 

Gomez-Polo et al. 2014; Yu et al. 2014; Wang et al. 2016; 

Zheng et al. 2021). ITS1 and ITS2 are nonfunctional 

spacers that separate the 18S-5.8S and 5.8S-28S rRNA 

genes, respectively (Wang et al. 2016; Zheng et al. 2021). 

As ITS sequences have low intra-species variation but high 

variation between species, they are helpful for species 

classification and phylogenetic analysis for 

morphologically similar organisms, both in prokaryotes 

and eukaryotes (Zheng et al. 2021). Finally, from the 

molecular identification of the combined mitochondrial 

COI-COII and ten microsatellite marker loci (Winnie et al. 

2020). 

The genetic diversity of N. lugens has been reported in 

several countries such as China, South Korea, Pakistan, 

India, and Malaysia (Jing et al. 2012; Latif et al. 2012; 

Anant et al. 2021; Zheng et al. 2021). The genetic diversity 

of N. lugens in Indonesia is widely reported in western 

Indonesia (Java Island) (Winnie et al. 2020; Chaerani et al. 

2021). Reports on the genetic diversity of N. lugens in 

eastern Indonesia have not been found. Therefore, this 

study aims to analyze genetic diversity and determine the 

intensity of BPH attacks on rice plants in eastern Indonesia, 

especially Bali. 

MATERIALS AND METHODS 

Brown Planthopper Sampling from Rice Dwarf Disease 

Endemic Areas 

Samples were taken from nine locations at the rice 

cultivation center in Bali Province (Badung, Gianyar, 

Klungkung, Bangli, Karangasem, Tabanan, Denpasar City, 

Buleleng, and Jembrana). The brown planthopper samples 

taken from rice plants were nymphs and imagos. Nymphs 

and imagos were used for total DNA extraction. After 

arriving at the laboratory, the nymphs and imago were 

stored dry at -20oC.  

Observation of BPH Attack Symptoms and Quantity of 

BPH Population/rice hills  

Observation of symptoms of BPH attack was carried 

out by observing symptoms of damage to rice plants due to 

BPH attack. The abundance of the BPH/rice hills 

population was obtained by counting all nymphs and 

imagoes obtained. Data on the population per cluster from 

20 samples or 20 rice hills at each observation fields were 

then averaged. For each location, 3 fields of rice cultivation 

center were taken which were used for observation 

BPH Attack Percentage 

The percentage of BPH attacks is calculated using the 

following formula: 

 
Note:  

P = Attack percentage (%)  

a = Number of rice hills affected by BPH  

b = Number of rice hills observed 

Damage Intensity 

Determination of scoring on symptoms of rice damage 

due to BPH attack is based on Table 1. The intensity of 

damage due to a BPH attack is determined using the 

formula (Erdiansyah and Damanhuri 2018): 
 

 
 

Note:  

I = Damage intensity  

Ni = The number of affected rice hills on the score i  

Vi = Score i  

N = The number of rice hills observed 

Z = Highest score 

Total DNA Extraction from Brown Planthopper 

Total DNA extraction of brown planthopper was 

obtained from one individual imago or one individual 

nymph based on the modified method of Goodwin et al. 

(1994). One individual imago was put into a microtube and 

then added to 100 μl of CTAB (Cethyl Trimethyl 

Ammonium Bromida) extraction buffer (2% CTAB, 1.4 M 

NaCl, 100 mM Tris-HCI, 20 mM EDTA 

(Ethylenediaminetetraacetic acid), and 1% PVP (-40 °C)). 

Next, 1 μl of proteinase K was added, then the insects were 

crushed using a micro-pistil, vortexed, and incubated in a 

water bath of 65°C for 3 minutes. After that, the tube was 

added with 100 μl CI (chloroform: isoamyl alcohol) in a 

ratio of 24:1. The tube was then vortexed for 3 minutes and 

centrifuged at 10,000 rpm for 15 minutes. The supernatant 

formed was transferred to a new microtube (60 μl) and then 

added with 3 M NaOAc (pH 5.2), as much as 1/10 of the 

total volume of the supernatant. Isopropanol was added up 

to 2/3 of the total volume of the supernatant, then incubated 

at -20°C for one night. The tube was centrifuged at 10,000 

rpm for 10 min, and the supernatant was discarded. The 

pellets were washed with 100 μl of 80% ethanol (cold) and 

centrifuged at 8000 rpm for 5 minutes. In the final step, the 

supernatant was removed, and the pellet was dried for 

approximately 1 hour. It was then added to a solution of 20 

μl TE and stored at -20°C until used. 

Amplification of mtCOI Fragments Using the PCR 

Method  

PCR reactants were manufactured with a total volume 

of 25 μl consisting of 12.5 μl Go Tag Green Master Mix 

(Promega, US) and 9.5 μl ddH2O. DNA amplification of 

the mtCOI fragment was carried out using a pair of 

universal primers mtCOI LCO 1490 (3'-

GGTCAACAAATCATAAAGATATTGG-5') and HCO 

2198 (5'-TAAACTTCA GGGTGACCA AAAAATCA-3') 

(Folmer et al. 1994) each 1 μl, and 1 μl DNA template. 

PCR reactions were carried out with a Perkin Elmer 480 

Thermocycler (Applied Biosystem, US). The PCR reaction 

was initiated by initial denaturation for 5 min at 94°C. The 
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PCR was continued for 35 cycles in the following order: 

94°C for 1 minute, 52°C for 35 seconds, 72°C for 1 minute 

30 seconds, and a final extension of 72°C for 7 minutes. 

The PCR results were then analyzed in 1% agarose gel. 

The DNA fragments of mtCOI were visualized using a UV 

transilluminator after being immersed in a 2% ethidium 

bromide solution for 15 minutes and photographed with a 

digital camera. The result of amplification by PCR 

technique was in the form of mtCOI DNA fragments with a 

size of ± 710 base pairs (pbp). 

Analysis of DNA Sequence Results 

Nucleotide sSequencing DNA fragment purification 

and mtCOI nucleotide sequencing were performed at PT. 

1st Base, Malaysia. The results were then registered in the 

NCBI gene bank (http://www.ncbi.nlm.nih.gov). Analysis 

of mtCOI DNA sequence data ChromasPro program was 

used to combine forward and reverse nucleotide sequences 

to obtain the mtCOI gene (ChromasPro version 2.01. 

2006). The Bioedit program was used to compare mtCOI 

fragments between samples (Multiple alignments). The 

phylogenetic relationship was built by comparing the 

mtCOI sample fragments from the brown planthopper from 

Indonesia with the mtCOI fragments already stored in the 

NCBI GenBank (http://www.ncbi.nlm.nih.gov). The 

criteria for retrieving mtCOI fragments at GenBank were 

fragments with a nucleotide base length of ± 710 bp 

(Boykin et al. 2007) (Table 3; Figure 3). The phylogenetic 

tree was constructed using the PAUP 4.0b10 program with 

the maximum parsimony cladistic quantitative method. The 

cladogram was compiled using the Heuristic method. The 

cladogram used results from the strick consensus with the 

statistical bootstrap test to obtain a 100% probability. 

RESULTS AND DISCUSSION 

The brown planthopper causes direct and indirect 

damage to rice plants. Direct damage was in the form of 

stunted and uneven growth of rice plants (Figure 1A and 

1B), yellow plants (Figure 1C), and hopperburn caused by 

fluid in rice plant cells sucked by BPH nymphs, brachiptera 

(Fig. short wings), and macroptera (long wings) (Figures 

1E and 1F). Indirect damage was caused by BPH, which 

acts as a vector of Rice grassy stunt virus and Rice ragged 

stunt virus, causing stunted rice plants (Figure 1D). Besides 

Bali or other parts of Indonesia, BPH attacks on rice crops 

were also reported in China, where hopperburn affected 

60% of all examined crops (Hu et al. 2014). Transmission 

of the stunt virus by the brown planthoppers occurs 

persistently (Horgan et al. 2015). Virus infection causes 

damage to plants because viruses use plant proteins for 

replication, resulting in loss of crop production (Listihani et 

al. 2020; Damayanti et al. 2022; Listihani et al. 2022; 

Pandawani et al. 2022; Selangga and Listihani 2022; 

Selangga et al. 2022). Therefore, infection with RGSV and 

RRSV in rice plants causes rice to lack nutrients to the 

point of stunting. 

A percentage of BPH attacks of more than 50% was 

found in Gianyar, Bangli, Jembrana, and Badung 

Regencies (Table 2). The BPH population was primarily 

found in Ciherang and IR-64 varieties of rice in the Badung 

Regency, with 43.67 BPH per rice hills (Table 2). Baehaki 

(2012) added that the economic threshold could be 

measured through the number or population of pests and 

planting age. BPH is said to have reached the economic 

threshold when the population of this pest was found in the 

field, as many as nine BPH per rice hill when the rice age 

was less than 40 DAP or 18 BPH when the rice was more 

than 40 DAP (Baehaki 2012). In general, rice varieties 

grown in all observation locations in Bali were BPH 

susceptible varieties, such as Ciherang, IR-64, Inpari 32, 

and Situbagendit. 

The dynamics of BPH development in the field can be 

influenced by several factors, including host plant factors 

and natural enemies (Ferrater et al. 2015; Horgan et al. 

2015; Kobayashi 2016). The host plant factors that affect 

the BPH population are related to the age of the rice plant. 

When the observations were made, the rice plants were still 

in the vegetative phase, aged 4-6 WAP. According to Jing 

et al. (2014), naturally, BPH usually comes to young rice 

fields, and insects usually come in the first two weeks after 

planting. Thus, the brown planthopper in rice cultivation 

might be the first generation of planthoppers that have not 

yet reproduced because one BPH life cycle takes between 

3-4 weeks (IRRI 2009). 

BPH observations in Denpasar, Tabanan, Karangasem, 

and Klungkung cities districts were dominated by 

macroptera imago (Table 2). According to Horgan et al. 

(2017), the planthopper that first came to the plantation was 

the macroptera planthopper as a winged immigrant 

planthopper. Meanwhile, in Badung, Gianyar, Buleleng, 

Bangli, and Jembrana districtsregencies, nymphsal BPH 

was dominated by BPH, and several individuals were in the 

imago phase of brachiptera and macroptera. The 

dominance of the nymph phase caused the population of 

BPH in Badung, Gianyar, Buleleng, Bangli, and Jembrana 

districts to be the highest when compared to the 

districtscities of Denpasar, Tabanan, Karangasem, and 

Klungkung. The presence of the brachiptera planthopper 

might be contributed to the increase in the nymph 

population (Baehaki 2012). Rapid population growth 

usually occurs in groups with many young individuals 

(Horgan et al. 2015; Triwidodo and Listihani 2020). 

The average intensity of BPH attack on Ciherang and 

IR-64 varieties of rice was higher than in other varieties. In 

the Ciherang and IR-64 varieties of rice, the average value 

of the highest attack intensity was 30% (Figure 2). It is 

because farmers grow rice varieties Ciherang and IR-64 

from year to year without any replacement of other 

varieties. Furthermore, rice varieties Ciherang and IR-64 

became very susceptible to BPH attacks. In addition, BPH 

is a pest that begins to attack rice plants from a young age, 

even when the rice is still in the nursery. 

According to Vu et al. (2014), fluctuations in BPH pest 

attacks are more influenced by the growth phase of the rice 

plant that is the host in the field. BPH pests are often found 

when rice plants are in the vegetative and generative stages 

(Bottrell and Schoenly 2012). Horgan et al. (2017) added 

that BPH pests could damage rice plants at all stages of 
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growth and act as vectors for grass and dwarf viruses. BPH 

attack was higher when rice was in the vegetative phase 

than in the generative phase (Horgan et al. 2015). It 

happens because the pests attack the young rice stalks. 

Considering the type of mouth of BPH, which is included 

in the suction, BPH can suck the liquid from the rice stems 

and cause the plant leaves to turn yellow (Anant et al. 

2021). According to Choi et al. (2019) and Sutrawati et al. 

(2021), during the vegetative phase, food availability in the 

form of nitrogen is abundant in rice plants. Rice plants 

need nitrogen to form plant organs. Food is one of the 

factors that affect the life of insects. Horgan (2018) 

continued that the N element absorbed by plants also serves 

as a source of nutrition for BPH. If food is available with 

good quality (suitable for pests), then the insect pest 

population will increase, and vice versa (Horgan 2018; 

Triwidodo and Listihani 2020). 

The mtCOI DNA band was successfully amplified from 

the total DNA extraction of one imago or nymph of BPH. 

The mtCOI fragment that was successfully amplified 

corresponds to a size of ±710 bp in all samples from nine 

districts in Bali, namely Badung, Gianyar, Klungkung, 

Bangli, Karangasem, Tabanan, Denpasar City, Buleleng, 

and Jembrana (Figure 3). Nucleotide and amino acid 

sequence analysis showed high homology with N. lugens 

sequences in the database at GenBank, 94.2 – 99.7% and 

95.8 - 100%, respectively (Table 3). N. lugens sequences 

from Badung, Gianyar, Klungkung, Bangli, Karangasem, 

Tabanan, Denpasar City, Buleleng, and Jembrana showed 

the highest nucleotide, and amino acid homology with N. 

lugens isolate FSD-034 from Pakistan (MK301229) 

biotype Y, respectively. 99.5 -99.74% and 100% (Table 3). 

The results of the molecular detection of N. lugens using 

the PCR method in Bali, Indonesia, are the first reports of 

the molecular character of N. lugens in Indonesia. 

Samples from Indonesia formed a group with N. lugens 

biotype Y fragment mtCOI from Pakistan, India, South 

Korea, and China (Figure 4). This study found N. lugens 

biotype Y in rice plants for the first time in Indonesia. The 

Indonesian sample did not form separate groups according 

to the proximity of the district locations but formed a 

polytomy cladogram (Figure 4). This polytomy cladogram 

shows that the N. lugens between regencies (Badung, 

Gianyar, Klungkung, Bangli, Karangasem, Tabanan, 

Denpasar City, Buleleng, and Jembrana) were observed to 

have the same ancestry. These results indicate high 

locomotion ability with genetic mixing between N. lugens 

in Bali isolates. Similar conditions were also demonstrated 

in N. lugens among Asian isolates using mitochondrial 

sequences showing genetic mixing. It can also be 

correlated with the theory of long-distance migration of N. 

lugens, which migrates from the tropics (northern Vietnam) 

in April-May to temperate regions (China, Korea, and 

Japan) in June-July as shown based on meteorological 

studies (Otuka et al. 2008). The population of N. lugens is a 

long-distance migratory flight from the tropics to temperate 

Asia before modern pesticides are widely used in tropical 

rice. Due to the infrequent use of insecticides prior to the 

1960s in the tropics, factors other than insecticides may 

have triggered long-wing movements to form N. lugens 

populations (Bottrell and Schoenly 2012). 

In previous studies in Indonesia, BPH biotypes 1, 2, 3, 

and 4 have been found. Kobayashi et al. (2014) reported 

that the brown planthopper is a highly adaptive insect 

because it can form new biotypes. In early 1975 the IR-26 

rice variety from IRRI Philippines was introduced. The IR-

26 variety was unique because it contained a Bph1 resistant 

gene to anticipate fluctuations in the brown planthopper 

population. However, in 1976 there was a great population 

explosion in several rice production centers due to changes 

in the brown planthopper population from biotype 1 to 

biotype 2. As an anticipatory measure against brown 

planthopper biotype 2, in 1980, the IR-42 rice variety 

(containing the bph2 resistant gene) was introduced from 

IRRI Philippines. Unfortunately, in 1981 there was another 

explosion in the brown planthopper population in 

Simalungun, North Sumatra, and several other areas due to 

changes in the brown planthopper population from biotype 

2 to biotype 3. To deal with the brown planthopper biotype 

3, rice variety IR-56 was introduced (containing the gene 

bph3 resistance) in 1983 and IR-64 (containing the bph1+ 

resistance gene) in 1986. The introduction process 

continues. In 1991, the IR-74 variety (containing the bph3 

resistant gene) was introduced. In 2006, the resistance gene 

IR-64 was broken because the brown planthopper 

population changed to biotype 4 (Baehaki 2012). The 

stability of the biotype zero brown planthoppers persisted 

for 41 years before becoming brown planthopper biotype 1. 

The change of brown planthopper biotype 1 to biotype 2 

only took 4 years, and the change of biotype 2 brown 

planthopper to biotype 3 within 5 years. Until 2005, the 

brown planthopper biotype 3 was still dominated by 

biotype 3, and in 2006 the biotype 4 brown planthopper 

began to develop. The long existence of the biotype 3 

brown planthopper was caused by the development of the 

IR-64 (bph1+) variety over a long period. IR-64 is a 

resistant variety (durable resistance) that can withstand 

changes in brown planthoppers to a more virulent biotype. 

The continuous cultivation of IR-64 rice varieties by 

farmers in Bali led to the emergence of a new biotype BPH, 

namely Y. Insects of biotype Y originated from biotype 1 

by eating YHY15 resistant varieties for more than two 

years for 33 generations (Jing et al. 2012). Rice varieties 

YHY15 carry the Bph15 resistance gene (Jing et al. 2012). 

This study shows great potential in the population of N. 

lugens to adapt to previously resistant rice varieties. This 

study reported that rice varieties Situbagendit and Inpari 

32, previously resistant to BPH, were susceptible to BPH. 

This research can provide information to farmers not to 

continuously plant susceptible varieties, which could cause 

BPH epidemics in the field, as well as the emergence of 

new, more virulent BPH biotypes. Thus a new control 

strategy based on a forecasting system can be developed 

for the regional management of this insect. 

In conclusion, N. lugens that attacks rice plants in Bali 

(Badung, Gianyar, Klungkung, Bangli, Karangasem, 

Tabanan, Denpasar City, Buleleng, and Jembrana) belongs 

to biotype Y. Symptoms of damage to rice plants are most 

severe in Badung Regency. Apart from Ciherang and IR-64 
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varieties, Situbagendit and Inpari 32 varieties are 

susceptible to BPH attack. 
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Table 1. The damage score of rice plants due to BPH attack 

 

Score Appearance Description 

0  Healthy  No planthopper was found in any rice hill. 

1  Very light 

damage  

The rice hills occupied by the planthoppers did not show dead midribs, few exuviae, and the rice 

stalks had not yet overgrown with Colletotrichum dematium and Cladosporium fungi that followed 

the brown planthopper attack. 

3  Slightly 

damaged  

The rice hills occupied by the planthoppers have shown dead midribs, many exuviae, and the rice 

stems are overgrown with Colletotrichum dematium and Cladosporium fungi that follow the brown 

planthopper attack. 

5  Heavily 

damaged  

Rice hills inhabited by planthoppers showed damage marked by many dead midribs, many exuviae, 

stunted and black-looking tillers, and overgrown with Colletotrichum dematium and Cladosporium 

fungi. 

7  Partially dead  Some of the stems in the rice hill die, or the rice hill withers due to planthoppers attack. 

9  Hopperburn Rice hills die from hopperburn 

Sumber: Baehaki (2012) 

 

Table 2. Population and symptoms of BPH attack on rice plants in Bali 

 

Location Rice varieties Rice plant age (DAP) 
BPH attack 

percentage (%) 

BPH population 

abundance (individues/rice 

hills) 

Denpasar City Situbagendit, 

Inpari 32 

35 35.43 7.41 

Badung Ciherang, IR-64 42 73.61 43.67 

Gianyar Ciherang, Inpari 32 45 52.26 12.49 

Tabanan Inpari 32 41 37.94 9.26 

Buleleng Ciherang, IR-64 33 46.82 11.28 

Karangasem Situbagendit 30 32.73 7.92 

Klungkung Inpari 32 43 35.89 8.53 

Bangli Ciherang, IR-64 42 52.80 14.83 

Jembrana Ciherang, Inpari 32 36 57.32 11.95 

Note: DAP= day after planting 
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Table 3. Nucleotide (nt) and amino acid (aa) homology of N. lugens in rice from Bali, Indonesia, compared with N. lugens from other countries in GenBank 

 

Isolate 
Origin of 

isolate 
Biotype 

Accession 

number 

Homology nt (aa) (%) N. lugens_IDN_ 

Denpasar Badung Gianyar Tabanan Buleleng 
Karangase

m 

Klungkun

g 
Bangli Jembrana 

FSD-034 PAK Y MK301229 99.5 (100) 99.6 (100) 99.5 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.7 (100) 99.5 (100) 99.6 (100) 

HZZ55 IND Y MK032794 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.6 (100) 99.5 (100) 99.6 (100) 

SAEVG_Morph0111 IND Y MN520923 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.4 (100) 99.5 (100) 99.5 (100) 99.5 (100) 99.6 (100) 

KBPH KOR Y MK590088 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

KOREA_BPH KOR Y LC461184 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.4 (100) 99.5 (100) 

WUHAN-Y CHN Y KC333653 99.3 (100) 99.5 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 99.4 (100) 99.3 (100) 99.4 (100) 

WUHAN-3 CHN 3 JN563997 97.8 (98.1) 97.2 (97.8) 97.5 (98.9) 97.5 (98.9) 97.4 (97.9) 97.8 (98.1) 97.5 (98.9) 97.2 (98.8) 97.6 (98.0) 

WUHAN-2 CHN 2 JN563996 96.3 (97.5) 96.3 (97.5) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.4 (97.5) 96.3 (97.5) 96.2 (97.4) 96.3 (97.5) 

WUHAN-1 CHN 1 JN563995 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 95.4 (96.7) 95.6 (96.8) 95.6 (96.8) 95.3 (96.7) 95.4 (96.7) 95.3 (96.7) 

GX CHN 1 LC461186 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.4 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

Gangavathi IND 1 OL451531 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 95.5 (96.8) 95.5 (96.8) 95.3 (96.7) 95.3 (96.7) 95.3 (96.7) 

WUHAN-L CHN L KC333654 94.2 (95.8) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.3 (96.0) 94.4 (96.2) 94.2 (95.8) 94.4 (96.2) 94.4 (96.2) 

N. bakeri CHN - JX266790 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 84.8 (85.9) 84.6 (85.6) 85.2 (86.1) 84.8 (85.9) 85.2 (86.1) 85.2 (86.1) 

Sogatella furcifera CHN - HM160123 75.6 (76.9) 75.6 (76.9) 76.2 (77.8) 77.6 (78.4) 77.4 (78.4) 76.8 (77.8) 75.6 (76.9) 76.8 (77.8) 77.6 (78.4) 

Notes: nt (nucleotide), aa (amino acid), IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South Korea), CHN (China), N. bakeri and Sogatella furcifera from China was used as outgroups 
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Figure 1. Symptoms of BPH attack on rice plants in Bali: A. rice plant growth is stunted; B. uneven plant growth (spots); C. yellow 

plant; D. dwarf rice plants; E. plants die like burning (hopperburn); F. BPH brachiptera and macroptera were found on rice stalks 

 

 
 

Figure 2. The attack intensity of N. lugens on rice in Bali Province 
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Figure 3. DNA amplification of N. lugens in rice plants in Bali using primers LCO 1490/HCO 2198. 1. Denpasar City, 2. Bagung, 3. 

Gianyar, 4. Tabanan, 5. Buleleng, 6. Karangasemt, 7. Klungkung, 8. Bangli, 9. Jembrana, and M. DNA marker 1 kb (Thermo Scientific) 

 

 
 

Figure 4. The cladogram of the mtCOI fragment of N. lugens from eastern Indonesia, Bali (Badung, Gianyar, Klungkung, Bangli, 

Karangasem, Tabanan, Denpasar City, Buleleng, and Jembrana) was compared with mtCOI fragments from several regions of the world 

that had been deposited on the NCBI website. N. bakeri and Sogatella furcifera from China were used as outgroups. The numbers on the 

branching cladograms represent bootstrap values with 100% probability. IDN (Indonesia), PAK (Pakistan), IND (India), KOR (South 

Korea), and CHN (China), isolates marked with black dots are Bali isolates. 
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